forked from Anjin-Liu/TFS-MDL-FWF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Exp_2_3_Synt_DriftDetection_MCAR.py
392 lines (296 loc) · 16.7 KB
/
Exp_2_3_Synt_DriftDetection_MCAR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 4 11:43:35 2019
@author: Anjin Liu
@email: [email protected]
@affiliation: The Drift, DeSI, CAI, UTS
"""
from mf_distance import data_handler as dh
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.experimental import enable_iterative_imputer # noqa
from sklearn.impute import IterativeImputer
from detection_methods import mul_wald_test
import scipy.stats as stats
from detection_methods import kmeans_chi2_test
from mf_distance import mf_distance_kmeans_chi2_test
import freqopttest.tst as tst
from freqopttest.data import TSTData
from freqopttest import kernel
from detection_methods import libquanttree as qt
from sklearn import metrics
def perform_mmd_test(train_miss_impute, test_miss_impute, train_full, test_full, alpha,
mmd_miss_impute=None, mmd_full=None):
mmd_result = np.zeros(2)
sb_data_miss_impute = TSTData(train_miss_impute, test_miss_impute)
if mmd_miss_impute is None:
x,y = sb_data_miss_impute.xy()
dist_mat_miss_impute = metrics.pairwise_distances(x, y)
the_kernel = kernel.KGauss(np.median(dist_mat_miss_impute))
mmd_miss_impute = tst.QuadMMDTest(the_kernel, alpha=alpha)
test_result = mmd_miss_impute.perform_test(sb_data_miss_impute)
if test_result['h0_rejected']:
mmd_result[0] = 1
sb_data_full = TSTData(train_full, test_full)
if mmd_full is None:
x,y = sb_data_full.xy()
dist_mat_full = metrics.pairwise_distances(x, y)
the_kernel = kernel.KGauss(np.median(dist_mat_full))
mmd_full = tst.QuadMMDTest(the_kernel, alpha=alpha)
test_result = mmd_full.perform_test(sb_data_full)
if test_result['h0_rejected']:
mmd_result[1] = 1
return mmd_result, mmd_miss_impute, mmd_full
def perform_me_test(train_miss_impute, test_miss_impute, train_full, test_full, alpha,
test_locs_miss=None, gwidth_miss=None, test_locs_full=None, gwidth_full=None):
me_result = np.zeros(2)
op = {
'n_test_locs': 5, # number of test locations to optimize
'max_iter': 200, # maximum number of gradient ascent iterations
'locs_step_size': 1.0, # step size for the test locations (features)
'gwidth_step_size': 0.1, # step size for the Gaussian width
'tol_fun': 1e-4, # stop if the objective does not increase more than this.
'seed': 0 # random seed
}
sb_data_miss_impute = TSTData(train_miss_impute, test_miss_impute)
train_miss_impute_sb, dumy = sb_data_miss_impute.split_tr_te(tr_proportion=0.1, seed=1)
test_miss_impute_sb, dumy = sb_data_miss_impute.split_tr_te(tr_proportion=1, seed=1)
if test_locs_miss is None:
test_locs_miss, gwidth_miss, info = tst.MeanEmbeddingTest.optimize_locs_width(train_miss_impute_sb, alpha, **op)
met_opt = tst.MeanEmbeddingTest(test_locs_miss, gwidth_miss, alpha)
test_result = met_opt.perform_test(test_miss_impute_sb)
if test_result['h0_rejected']:
me_result[0] = 1
sb_data_full = TSTData(train_full, test_full)
train_full_sb, dumy = sb_data_full.split_tr_te(tr_proportion=0.1, seed=1)
test_full_sb, dumy = sb_data_full.split_tr_te(tr_proportion=1, seed=1)
#dumy, test_full_sb = sb_data_full.split_tr_te(tr_proportion=0, seed=1)
if test_locs_full is None:
test_locs_full, gwidth_full, info = tst.MeanEmbeddingTest.optimize_locs_width(train_full_sb, alpha, **op)
met_opt = tst.MeanEmbeddingTest(test_locs_full, gwidth_full, alpha)
test_result = met_opt.perform_test(test_full_sb)
if test_result['h0_rejected']:
me_result[1] = 1
return me_result, test_locs_miss, gwidth_miss, test_locs_full, gwidth_full
def perform_QTree_test(train_miss_impute, test_miss_impute, train_full, test_full, alpha, Qtree_Htest_miss_impute=None, Qtree_Htest_full=None):
QTree_result = np.zeros(2)
m1 = train_miss_impute.shape[0]
m2 = test_miss_impute.shape[0]
K = int(m1/50)
B = 5000
if Qtree_Htest_miss_impute is None:
qtree_miss_impute = qt.QuantTree(K)
qtree_miss_impute.build_histogram(train_miss_impute, True)
Qtree_Htest_miss_impute = qt.ChangeDetectionTest(qtree_miss_impute, m2, qt.pearson_statistic)
threshold = qt.ChangeDetectionTest.get_precomputed_quanttree_threshold('pearson', alpha, K, m1, m2)
if threshold is None:
threshold = Qtree_Htest_miss_impute.estimate_quanttree_threshold(alpha, B)
Qtree_Htest_miss_impute.set_threshold(alpha, threshold)
print('pearson_dist_free', K, m1, m2, threshold)
hp1, _ = Qtree_Htest_miss_impute.reject_null_hypothesis(test_miss_impute, alpha)
if hp1:
QTree_result[0] = 1
if Qtree_Htest_full is None:
qtree_full = qt.QuantTree(K)
qtree_full.build_histogram(train_full, True)
Qtree_Htest_full = qt.ChangeDetectionTest(qtree_full, m2, qt.pearson_statistic)
threshold = qt.ChangeDetectionTest.get_precomputed_quanttree_threshold('pearson', alpha, K, m1, m2)
if threshold is None:
threshold = Qtree_Htest_full.estimate_quanttree_threshold(alpha, B)
Qtree_Htest_full.set_threshold(alpha, threshold)
print('pearson_dist_free', K, m1, m2, threshold)
hp2, _ = Qtree_Htest_full.reject_null_hypothesis(test_full, alpha)
if hp2:
QTree_result[1] = 1
return QTree_result, Qtree_Htest_miss_impute, Qtree_Htest_full
def perform_mww_test(train_miss_impute, test_miss_impute, train_full, test_full, alpha):
mww_result = np.zeros(2)
W_miss, R_miss = mul_wald_test.ww_test(train_miss_impute, test_miss_impute)
pvalue_miss = stats.norm.cdf(W_miss) # one sided test
reject_miss = pvalue_miss <= alpha
if reject_miss:
mww_result[0] = 1
W_full, R_full = mul_wald_test.ww_test(train_full, test_full)
pvalue_full = stats.norm.cdf(W_full) # one sided test
reject_full = pvalue_full <= alpha
if reject_full:
mww_result[1] = 1
return mww_result
def perform_kmean_chi2_test(train_miss_impute, test_miss_impute, train_full, test_full, alpha, kchi2_miss_impute=None, kchi2_full=None):
m = train_miss_impute.shape[0]
kmean_chi2_result = np.zeros(2)
if kchi2_miss_impute is None:
kchi2_miss_impute = kmeans_chi2_test.kMeansChi2(int(m/50))
kchi2_miss_impute.buildkMeans(train_miss_impute)
if kchi2_full is None:
kchi2_full = kmeans_chi2_test.kMeansChi2(int(m/50))
kchi2_full.buildkMeans(train_full)
kmean_chi2_result[0] = kchi2_miss_impute.drift_detection(test_miss_impute, alpha)
kmean_chi2_result[1] = kchi2_full.drift_detection(test_full, alpha)
return kmean_chi2_result, kchi2_miss_impute, kchi2_full
def perform_mfkmean_chi2_test(train_miss, test_miss, train_full, test_full, alpha, mfkchi2_miss=None, mfkchi2_full=None, apply_fuzzy='Rectangle', top_k=3):
m = train_miss.shape[0]
mfkmean_chi2_result = np.zeros(2)
if mfkchi2_miss is None:
mfkchi2_miss = mf_distance_kmeans_chi2_test.MFkMeansChi2(int(m/50), apply_fuzzy, top_k=top_k)
mfkchi2_miss.buildMFkMeans(train_miss)
if mfkchi2_full is None:
mfkchi2_full = mf_distance_kmeans_chi2_test.MFkMeansChi2(int(m/50), apply_fuzzy, top_k=top_k)
mfkchi2_full.buildMFkMeans(train_full)
mfkmean_chi2_result[0] = mfkchi2_miss.drift_detection(test_miss, alpha)
mfkmean_chi2_result[1] = mfkchi2_full.drift_detection(test_full, alpha)
return mfkmean_chi2_result, mfkchi2_miss, mfkchi2_full
def mcar_drift_detection(run_method_list, drift_type='gau_mean', alpha=0.05, num_test_PerDriftDelta=150, top_k=3):
m = 500
mv_config = {}
if drift_type=='gau_mean' or drift_type=='gau_cov':
n = 4
for i in range(4):
mv_config[i] = 0.2
elif drift_type=='uni_mean':
n = 10
for i in range(5):
mv_config[i] = 0.2
elif drift_type=='poi_mean':
n = 8
for i in range(5):
mv_config[i] = 0.2
elif drift_type=='poi_rho':
n = 6
for i in range(2,6):
mv_config[i] = 0.2
imp = IterativeImputer(max_iter=10, random_state=0)
if drift_type=='uni_mean':
train_drift_config = 0
train_miss, train_full = dh.uni_distributed(0, m, n, mv_config, train_drift_config)
drift_delta_max = 0.15
elif drift_type=='gau_mean':
train_miss, train_full, mu_sigma = dh.gau_distributed(0, m, n, mv_config)
drift_delta_max = 0.35
elif drift_type=='gau_cov':
train_miss, train_full, mu_sigma = dh.gau_distributed(0, m, n, mv_config)
drift_delta_max = 0.8
elif drift_type=='poi_mean':
train_miss, train_full, lam = dh.poi_distributed(0, m, n, mv_config)
drift_delta_max = 2.5
elif drift_type=='poi_rho':
train_miss, train_full, lam = dh.poi_distributed(0, m, n, mv_config, rho=0)
drift_delta_max = 0.65
train_miss_impute = imp.fit_transform(train_miss)
drift_delta_size = 10
drift_delta = np.arange(0, drift_delta_max + drift_delta_max/drift_delta_size, drift_delta_max/drift_delta_size)
detection_result = np.zeros([drift_delta_size+1, len(run_method_list)*2+1])
detection_result[:, 0] = drift_delta
delta_idx = 0
kchi2_miss_impute = None
kchi2_full = None
mfkchi2_miss_crisp = None
mfkchi2_full_crisp = None
mfkchi2_miss_fuzzy_gau = None
mfkchi2_full_fuzzy_gau = None
mfkchi2_miss_fuzzy_tri = None
mfkchi2_full_fuzzy_tri = None
me_ml = None
me_mg = None
me_fl = None
me_fg = None
mmd_miss_impute = None
mmd_full = None
Qtree_Htest_miss_impute = None
Qtree_Htest_full = None
for delta in drift_delta:
for i in range(num_test_PerDriftDelta):
#r_seed = delta_idx * num_test_PerDriftDelta + i + 100000
r_seed = delta_idx * num_test_PerDriftDelta + i + 1
if drift_type=='uni_mean':
test_miss, test_full = dh.uni_distributed(r_seed, m, n, mv_config, drift_config=delta)
elif drift_type=='gau_mean':
test_miss, test_full, mu_sigma = dh.gau_distributed(r_seed, m, n, mv_config, mu_sigma, drift_config=('mean', delta))
elif drift_type=='gau_cov':
test_miss, test_full, mu_sigma = dh.gau_distributed(r_seed, m, n, mv_config, mu_sigma, drift_config=('cov', delta))
elif drift_type=='poi_mean':
test_miss, test_full, lam = dh.poi_distributed(r_seed, m, n, mv_config, lam, drift_config=delta)
elif drift_type=='poi_rho':
test_miss, test_full, lam = dh.poi_distributed(r_seed, m, n, mv_config, lam, rho=delta)
#imp = IterativeImputer(max_iter=10, random_state=0)
test_miss_impute = imp.fit_transform(test_miss)
# plt.scatter(train_full[:,0], train_full[:,1])
# plt.scatter(test_full[:,0], test_full[:,1])
# plt.show()
run_method_counter = 0
if 'MWW' in run_method_list:
print('MWW')
np.random.seed(0)
mww_result = perform_mww_test(train_miss_impute, test_miss_impute, train_full, test_full, alpha)
detection_result[delta_idx, 1+run_method_counter:3+run_method_counter] = detection_result[delta_idx, 1+run_method_counter:3+run_method_counter] + mww_result
run_method_counter = run_method_counter + 2
if 'kchi2' in run_method_list:
print('kchi2')
np.random.seed(0)
kchi2_result, kchi2_miss_impute, kchi2_full = perform_kmean_chi2_test(
train_miss_impute, test_miss_impute, train_full, test_full, alpha, kchi2_miss_impute, kchi2_full)
detection_result[delta_idx, 1+run_method_counter:3+run_method_counter] = detection_result[delta_idx, 1+run_method_counter:3+run_method_counter] + kchi2_result
run_method_counter = run_method_counter + 2
if 'mfkchi2_fuzzy_gau' in run_method_list:
print('mfkchi2_fuzzy_gau')
np.random.seed(0)
mfkchi2_fuzzy_result, mfkchi2_miss_fuzzy_gau, mfkchi2_full_fuzzy_gau = perform_mfkmean_chi2_test(
train_miss, test_miss, train_full, test_full, alpha, mfkchi2_miss_fuzzy_gau, mfkchi2_full_fuzzy_gau, apply_fuzzy='Gaussion', top_k=top_k)
detection_result[delta_idx, 1+run_method_counter:3+run_method_counter] = detection_result[delta_idx, 1+run_method_counter:3+run_method_counter] + mfkchi2_fuzzy_result
run_method_counter = run_method_counter + 2
if 'mfkchi2_fuzzy_tri' in run_method_list:
print('mfkchi2_fuzzy_tri')
np.random.seed(0)
mfkchi2_fuzzy_result, mfkchi2_miss_fuzzy_tri, mfkchi2_full_fuzzy_tri = perform_mfkmean_chi2_test(
train_miss, test_miss, train_full, test_full, alpha, mfkchi2_miss_fuzzy_tri, mfkchi2_full_fuzzy_tri, apply_fuzzy='Triangle', top_k=top_k)
detection_result[delta_idx, 1+run_method_counter:3+run_method_counter] = detection_result[delta_idx, 1+run_method_counter:3+run_method_counter] + mfkchi2_fuzzy_result
run_method_counter = run_method_counter + 2
if 'mfkchi2_crisp' in run_method_list:
print('mfkchi2_crisp')
np.random.seed(0)
mfkchi2_crisp_result, mfkchi2_miss_crisp, mfkchi2_full_crisp = perform_mfkmean_chi2_test(
train_miss, test_miss, train_full, test_full, alpha, mfkchi2_miss_crisp, mfkchi2_full_crisp, apply_fuzzy='Crisp')
detection_result[delta_idx, 1+run_method_counter:3+run_method_counter] = detection_result[delta_idx, 1+run_method_counter:3+run_method_counter] + mfkchi2_crisp_result
run_method_counter = run_method_counter + 2
if 'ME' in run_method_list:
print('ME')
np.random.seed(0)
me_result, me_ml, me_mg, me_fl, me_fg = perform_me_test(
train_miss_impute, test_miss_impute, train_full, test_full, alpha, me_ml, me_mg, me_fl, me_fg)
detection_result[delta_idx, 1+run_method_counter:3+run_method_counter] = detection_result[delta_idx, 1+run_method_counter:3+run_method_counter] + me_result
run_method_counter = run_method_counter + 2
if 'MMD' in run_method_list:
print('MMD')
np.random.seed(0)
mmd_result, mmd_miss_impute, mmd_full = perform_mmd_test(
train_miss_impute, test_miss_impute, train_full, test_full, alpha, mmd_miss_impute, mmd_full)
detection_result[delta_idx, 1+run_method_counter:3+run_method_counter] = detection_result[delta_idx, 1+run_method_counter:3+run_method_counter] + mmd_result
run_method_counter = run_method_counter + 2
if 'QuantTree' in run_method_list:
print('QuantTree')
np.random.seed(0)
Qtree_result, Qtree_Htest_miss_impute, Qtree_Htest_full = perform_QTree_test(
train_miss_impute, test_miss_impute, train_full, test_full, alpha, Qtree_Htest_miss_impute, Qtree_Htest_full)
detection_result[delta_idx, 1+run_method_counter:3+run_method_counter] = detection_result[delta_idx, 1+run_method_counter:3+run_method_counter] + Qtree_result
run_method_counter = run_method_counter + 2
delta_idx = delta_idx + 1
return detection_result
if __name__ == "__main__":
print('Exp3')
num_test_PerDriftDelta = 500
alpha = 0.05
run_method_list = ['MWW', 'kchi2', 'mfkchi2_fuzzy_gau', 'mfkchi2_fuzzy_tri', 'mfkchi2_crisp', 'ME', 'MMD', 'QuantTree']
#run_method_list = ['mfkchi2_fuzzy_gau']
dataset_list = ['uni_mean', 'gau_mean', 'gau_cov', 'poi_mean', 'poi_rho']
#dataset_list = ['poi_rho']
top_k=3
uni_columns = ['delta']
for i in range(len(run_method_list)):
uni_columns.append(run_method_list[i]+'_miss')
uni_columns.append(run_method_list[i]+'_full')
for drift_type in dataset_list:
# detection_result = gau_mcar_drift_detection(run_method_list, alpha, num_test_PerDriftDelta, drift_type='cov')
detection_result = mcar_drift_detection(run_method_list, drift_type, alpha, num_test_PerDriftDelta, top_k=top_k)
detection_result = pd.DataFrame(detection_result, columns=uni_columns)
detection_result.to_csv('Results/'+drift_type+'_detection.csv', index=False)