forked from szagoruyko/imagine-nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpatialSameResponseNormalization.lua
44 lines (35 loc) · 1.28 KB
/
SpatialSameResponseNormalization.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
local SpatialSameResponseNormalization, parent = torch.class('inn.SpatialSameResponseNormalization', 'nn.Module')
function SpatialSameResponseNormalization:__init(size, alpha, beta)
parent.__init(self)
self.size = size or 3
self.alpha = alpha or 5e-5
self.beta = beta or 0.75
local pad = math.floor(self.size/2)
local numerator = nn.Identity()
local denominator = nn.Sequential()
denominator:add(nn.SpatialZeroPadding(pad, pad, pad, pad))
denominator:add(nn.Power(2))
denominator:add(nn.SpatialAveragePooling(self.size,self.size,1,1))
denominator:add(nn.MulConstant(self.alpha,true))
denominator:add(nn.AddConstant(1,true))
denominator:add(nn.Power(self.beta))
local divide = nn.ConcatTable()
divide:add(numerator)
divide:add(denominator)
self.modules = nn.Sequential()
self.modules:add(divide)
self.modules:add(nn.CDivTable())
end
function SpatialSameResponseNormalization:updateOutput(input)
self.output = self.modules:forward(input)
return self.output
end
function SpatialSameResponseNormalization:updateGradInput(input,gradOutput)
self.gradInput = self.modules:backward(input,gradOutput)
return self.gradInput
end
function SpatialSameResponseNormalization:type(type)
parent.type(self,type)
self.modules:type(type)
return self
end