forked from szagoruyko/imagine-nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpatialStochasticPooling.cu
209 lines (183 loc) · 7.34 KB
/
SpatialStochasticPooling.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#include <THC/THC.h>
// CUDA: grid stride looping
#define CUDA_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
i < (n); \
i += blockDim.x * gridDim.x)
// Use 1024 threads per block, which requires cuda sm_2x or above
const int CUDA_NUM_THREADS = 1024;
// CUDA: number of blocks for threads.
inline int GET_BLOCKS(const int N) {
return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS;
}
// kernels borrowed from Caffe
__global__ void StoPoolForwardTrain(const int nthreads,
const float* bottom_data,
const int num, const int channels, const int height,
const int width, const int pooled_height, const int pooled_width,
const int kernel_h, const int kernel_w, const int stride_h,
const int stride_w, float* rand_idx, float* top_data) {
CUDA_KERNEL_LOOP(index, nthreads) {
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
int hstart = ph * stride_h;
int hend = min(hstart + kernel_h, height);
int wstart = pw * stride_w;
int wend = min(wstart + kernel_w, width);
float cumsum = 0.;
bottom_data += (n * channels + c) * height * width;
// First pass: get sum
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
cumsum += bottom_data[h * width + w];
}
}
float thres = rand_idx[index] * cumsum;
// Second pass: get value, and set index.
cumsum = 0;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
cumsum += bottom_data[h * width + w];
if (cumsum >= thres) {
rand_idx[index] = ((n * channels + c) * height + h) * width + w;
top_data[index] = bottom_data[h * width + w];
return;
}
}
}
}
}
__global__ void StoPoolForwardTest(const int nthreads,
const float* bottom_data,
const int num, const int channels, const int height,
const int width, const int pooled_height, const int pooled_width,
const int kernel_h, const int kernel_w, const int stride_h,
const int stride_w, float* top_data) {
CUDA_KERNEL_LOOP(index, nthreads) {
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
int hstart = ph * stride_h;
int hend = min(hstart + kernel_h, height);
int wstart = pw * stride_w;
int wend = min(wstart + kernel_w, width);
// We set cumsum to be 0 to avoid divide-by-zero problems
float cumsum = FLT_MIN;
float cumvalues = 0.;
bottom_data += (n * channels + c) * height * width;
// First pass: get sum
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
cumsum += bottom_data[h * width + w];
cumvalues += bottom_data[h * width + w] * bottom_data[h * width + w];
}
}
top_data[index] = cumvalues / cumsum;
}
}
extern "C"
void SpatialStochasticPooling_updateOutput(THCState* state, THCudaTensor* input,
THCudaTensor* output, THCudaTensor* indices, int kW, int kH, int dW, int dH, bool train)
{
long nInputCols, nInputRows, nInputPlane, batchSize;
if (input->nDimension == 3) {
nInputCols = input->size[2];
nInputRows = input->size[1];
nInputPlane = input->size[0];
batchSize = 1;
}
else
{
nInputCols = input->size[3];
nInputRows = input->size[2];
nInputPlane = input->size[1];
batchSize = input->size[0];
}
long nOutputCols = ceil(float(nInputCols - kW) / float(dW)) + 1;
long nOutputRows = ceil(float(nInputRows - kH) / float(dH)) + 1;
input = THCudaTensor_newContiguous(state, input);
float* input_data = THCudaTensor_data(state, input);
THCudaTensor_resize4d(state, output, batchSize, nInputPlane, nOutputRows, nOutputCols);
THCudaTensor_resizeAs(state, indices, output);
THCudaTensor_uniform(state, indices, 0, 1);
float* indices_data = THCudaTensor_data(state, indices);
float* output_data = THCudaTensor_data(state, output);
int count = THCudaTensor_nElement(state, output);
if(train)
StoPoolForwardTrain <<< GET_BLOCKS(count), CUDA_NUM_THREADS, 0, THCState_getCurrentStream(state) >>>
(count, input_data,
batchSize, nInputPlane, nInputRows, nInputCols, nOutputRows, nOutputCols,
kH, kW, dH, dW, indices_data, output_data);
else
StoPoolForwardTest <<< GET_BLOCKS(count), CUDA_NUM_THREADS, 0, THCState_getCurrentStream(state) >>>
(count, input_data,
batchSize, nInputPlane, nInputRows, nInputCols, nOutputRows, nOutputCols,
kH, kW, dH, dW, output_data);
if(input->nDimension == 3)
THCudaTensor_resize3d(state, output, nInputPlane, nOutputRows, nOutputCols);
THCudaTensor_free(state, input);
}
__global__ void StoPoolBackward(const int nthreads,
const float* rand_idx, const float* top_diff,
const int num, const int channels, const int height,
const int width, const int pooled_height, const int pooled_width,
const int kernel_h, const int kernel_w, const int stride_h,
const int stride_w, float* bottom_diff) {
CUDA_KERNEL_LOOP(index, nthreads) {
// find out the local index
// find out the local offset
int w = index % width;
int h = (index / width) % height;
int c = (index / width / height) % channels;
int n = index / width / height / channels;
int phstart = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
int phend = min(h / stride_h + 1, pooled_height);
int pwstart = (w < kernel_w) ? 0 : (w - kernel_w) / stride_w + 1;
int pwend = min(w / stride_w + 1, pooled_width);
float gradient = 0;
rand_idx += (n * channels + c) * pooled_height * pooled_width;
top_diff += (n * channels + c) * pooled_height * pooled_width;
for (int ph = phstart; ph < phend; ++ph) {
for (int pw = pwstart; pw < pwend; ++pw) {
gradient += top_diff[ph * pooled_width + pw] *
(index == static_cast<int>(rand_idx[ph * pooled_width + pw]));
}
}
bottom_diff[index] = gradient;
}
}
extern "C"
void SpatialStochasticPooling_updateGradInput(THCState* state, THCudaTensor* input,
THCudaTensor* gradInput, THCudaTensor* gradOutput, THCudaTensor* indices, int kW, int kH, int dW, int dH)
{
long nInputCols, nInputRows, nInputPlane, batchSize;
if (input->nDimension == 3) {
nInputCols = input->size[2];
nInputRows = input->size[1];
nInputPlane = input->size[0];
batchSize = 1;
}
else
{
nInputCols = input->size[3];
nInputRows = input->size[2];
nInputPlane = input->size[1];
batchSize = input->size[0];
}
long nOutputCols = ceil(float(nInputCols - kW) / float(dW)) + 1;
long nOutputRows = ceil(float(nInputRows - kH) / float(dH)) + 1;
gradOutput = THCudaTensor_newContiguous(state, gradOutput);
THCudaTensor_resizeAs(state, gradInput, input);
int count = THCudaTensor_nElement(state, input);
StoPoolBackward <<< GET_BLOCKS(count), CUDA_NUM_THREADS, 0, THCState_getCurrentStream(state) >>>
(count,
THCudaTensor_data(state, indices),
THCudaTensor_data(state, gradOutput),
batchSize, nInputPlane, nInputRows, nInputCols, nOutputRows, nOutputCols,
kH, kW, dH, dW,
THCudaTensor_data(state, gradInput));
THCudaTensor_free(state, gradOutput);
}