diff --git a/rig-qdrant/Cargo.toml b/rig-qdrant/Cargo.toml index 637d708f..199bd89a 100644 --- a/rig-qdrant/Cargo.toml +++ b/rig-qdrant/Cargo.toml @@ -1,6 +1,6 @@ [package] name = "rig-qdrant" -version = "0.1.0" +version = "0.1.1" edition = "2021" license = "MIT" readme = "README.md" diff --git a/rig-qdrant/README.md b/rig-qdrant/README.md index 8124f40c..461be653 100644 --- a/rig-qdrant/README.md +++ b/rig-qdrant/README.md @@ -1,5 +1,4 @@ # Rig-Qdrant - Vector store index integration for [Qdrant](https://qdrant.tech/). This integration supports dense vector retrieval using Rig's embedding providers. It is also extensible to allow all [hybrid queries](https://qdrant.tech/documentation/concepts/hybrid-queries/) supported by Qdrant. You can find end-to-end examples [here](https://github.com/0xPlaygrounds/rig/tree/main/rig-qdrant/examples). diff --git a/rig-qdrant/examples/qdrant_vector_search.rs b/rig-qdrant/examples/qdrant_vector_search.rs index 4516b0bb..b23687cf 100644 --- a/rig-qdrant/examples/qdrant_vector_search.rs +++ b/rig-qdrant/examples/qdrant_vector_search.rs @@ -30,6 +30,8 @@ async fn main() -> Result<(), anyhow::Error> { let client = Qdrant::from_url("http://localhost:6334").build()?; // Create a collection with 1536 dimensions if it doesn't exist + // Note: Make sure the dimensions match the size of the embeddings returned by the + // model you are using if !client.collection_exists(COLLECTION_NAME).await? { client .create_collection(