From f43aa3986db1fa7b89204c5342419114768b52e8 Mon Sep 17 00:00:00 2001 From: Cryp Toon Date: Mon, 11 Mar 2024 15:09:52 +0100 Subject: [PATCH] Get EC BIP38 key multiplication working with ecdsa module --- bitcoinlib/keys.py | 25 +++++++++++++------------ 1 file changed, 13 insertions(+), 12 deletions(-) diff --git a/bitcoinlib/keys.py b/bitcoinlib/keys.py index c40f1f6a..aaa18b7e 100644 --- a/bitcoinlib/keys.py +++ b/bitcoinlib/keys.py @@ -674,9 +674,9 @@ def bip38_create_new_encrypted_wif(intermediate_passphrase, compressed=True, see :param compressed: Compressed key :type compressed: boolean :param seed: Seed, default to ``os.urandom(24)`` - :type seed: Optional[str, bytes] - :param network: Network type - :type network: Literal["mainnet", "testnet"], default to ``mainnet`` + :type seed: str, bytes + :param network: Network name + :type network: str :returns: dict -- Encrypted WIF (Wallet Important Format) @@ -713,7 +713,7 @@ def bip38_create_new_encrypted_wif(intermediate_passphrase, compressed=True, see raise ValueError("Invalid EC encrypted WIF (Wallet Important Format)") pk_point = ec_point_multiplication(HDKey(pass_point).public_point(), int.from_bytes(factor_b, 'big')) - k = HDKey((pk_point.x, pk_point.y), compressed=compressed, witness_type='legacy') + k = HDKey((pk_point[0], pk_point[1]), compressed=compressed, witness_type='legacy', network=network) public_key = k.public_hex address = k.address() address_hash = double_sha256(bytes(address, 'utf8'))[:4] @@ -2709,28 +2709,29 @@ def ec_point(m): return fastecdsa_keys.get_public_key(m, fastecdsa_secp256k1) else: point = secp256k1_generator - point *= m - return point + return point * m def ec_point_multiplication(p, m): """ Method for elliptic curve multiplication on the secp256k1 curve. Multiply Generator point G by m + :param p: Point on SECP256k1 curve + :type p: tuple :param m: A scalar multiplier :type m: int - :return Point: Generator point G multiplied by m + :return tuple: Generator point G multiplied by m as tuple in (x, y) format """ m = int(m) if USE_FASTECDSA: point = fastecdsa_point.Point(p[0], p[1], fastecdsa_secp256k1) - return point * m + point_m = point * m + return (point_m.x, point_m.y) else: - raise NotImplementedError - # point = secp256k1_generator - # point *= m - # return point + point = ecdsa.ellipticcurve.Point(ecdsa.SECP256k1.curve, p[0], p[1]) + point_m = point * m + return (point_m.x(), point_m.y()) def mod_sqrt(a):