forked from nomewang/M3DM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
124 lines (106 loc) · 6.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import argparse
from m3dm_runner import M3DM
from dataset import eyecandies_classes, mvtec3d_classes
import pandas as pd
def run_3d_ads(args):
if args.dataset_type=='eyecandies':
classes = eyecandies_classes()
elif args.dataset_type=='mvtec3d':
classes = mvtec3d_classes()
METHOD_NAMES = [args.method_name]
image_rocaucs_df = pd.DataFrame(METHOD_NAMES, columns=['Method'])
pixel_rocaucs_df = pd.DataFrame(METHOD_NAMES, columns=['Method'])
au_pros_df = pd.DataFrame(METHOD_NAMES, columns=['Method'])
for cls in classes:
model = M3DM(args)
model.fit(cls)
image_rocaucs, pixel_rocaucs, au_pros = model.evaluate(cls)
image_rocaucs_df[cls.title()] = image_rocaucs_df['Method'].map(image_rocaucs)
pixel_rocaucs_df[cls.title()] = pixel_rocaucs_df['Method'].map(pixel_rocaucs)
au_pros_df[cls.title()] = au_pros_df['Method'].map(au_pros)
print(f"\nFinished running on class {cls}")
print("################################################################################\n\n")
image_rocaucs_df['Mean'] = round(image_rocaucs_df.iloc[:, 1:].mean(axis=1),3)
pixel_rocaucs_df['Mean'] = round(pixel_rocaucs_df.iloc[:, 1:].mean(axis=1),3)
au_pros_df['Mean'] = round(au_pros_df.iloc[:, 1:].mean(axis=1),3)
print("\n\n################################################################################")
print("############################# Image ROCAUC Results #############################")
print("################################################################################\n")
print(image_rocaucs_df.to_markdown(index=False))
print("\n\n################################################################################")
print("############################# Pixel ROCAUC Results #############################")
print("################################################################################\n")
print(pixel_rocaucs_df.to_markdown(index=False))
print("\n\n##########################################################################")
print("############################# AU PRO Results #############################")
print("##########################################################################\n")
print(au_pros_df.to_markdown(index=False))
with open("results/image_rocauc_results.md", "a") as tf:
tf.write(image_rocaucs_df.to_markdown(index=False))
with open("results/pixel_rocauc_results.md", "a") as tf:
tf.write(pixel_rocaucs_df.to_markdown(index=False))
with open("results/aupro_results.md", "a") as tf:
tf.write(au_pros_df.to_markdown(index=False))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('--method_name', default='DINO+Point_MAE+Fusion', type=str,
choices=['DINO', 'Point_MAE', 'Fusion', 'DINO+Point_MAE', 'DINO+Point_MAE+Fusion', 'DINO+Point_MAE+add'],
help='Anomaly detection modal name.')
parser.add_argument('--max_sample', default=400, type=int,
help='Max sample number.')
parser.add_argument('--memory_bank', default='multiple', type=str,
choices=["multiple", "single"],
help='memory bank mode: "multiple", "single".')
parser.add_argument('--rgb_backbone_name', default='vit_base_patch8_224_dino', type=str,
choices=['vit_base_patch8_224_dino', 'vit_base_patch8_224', 'vit_base_patch8_224_in21k', 'vit_small_patch8_224_dino'],
help='Timm checkpoints name of RGB backbone.')
parser.add_argument('--xyz_backbone_name', default='Point_MAE', type=str, choices=['Point_MAE', 'Point_Bert'],
help='Checkpoints name of RGB backbone[Point_MAE, Point_Bert].')
parser.add_argument('--fusion_module_path', default='checkpoints/checkpoint-0.pth', type=str,
help='Checkpoints for fusion module.')
parser.add_argument('--save_feature', default=False, action='store_true',
help='Save feature for training fusion block.')
parser.add_argument('--use_uff', default=False, action='store_true',
help='Use UFF module.')
parser.add_argument('--save_feature_path', default='datasets/patch_lib', type=str,
help='Save feature for training fusion block.')
parser.add_argument('--save_preds', default=False, action='store_true',
help='Save predicts results.')
parser.add_argument('--group_size', default=128, type=int,
help='Point group size of Point Transformer.')
parser.add_argument('--num_group', default=1024, type=int,
help='Point groups number of Point Transformer.')
parser.add_argument('--random_state', default=None, type=int,
help='random_state for random project')
parser.add_argument('--dataset_type', default='mvtec3d', type=str, choices=['mvtec3d', 'eyecandies'],
help='Dataset type for training or testing')
parser.add_argument('--dataset_path', default='datasets/mvtec3d', type=str,
help='Dataset store path')
parser.add_argument('--img_size', default=224, type=int,
help='Images size for model')
parser.add_argument('--xyz_s_lambda', default=1.0, type=float,
help='xyz_s_lambda')
parser.add_argument('--xyz_smap_lambda', default=1.0, type=float,
help='xyz_smap_lambda')
parser.add_argument('--rgb_s_lambda', default=0.1, type=float,
help='rgb_s_lambda')
parser.add_argument('--rgb_smap_lambda', default=0.1, type=float,
help='rgb_smap_lambda')
parser.add_argument('--fusion_s_lambda', default=1.0, type=float,
help='fusion_s_lambda')
parser.add_argument('--fusion_smap_lambda', default=1.0, type=float,
help='fusion_smap_lambda')
parser.add_argument('--coreset_eps', default=0.9, type=float,
help='eps for sparse project')
parser.add_argument('--f_coreset', default=0.1, type=float,
help='eps for sparse project')
parser.add_argument('--asy_memory_bank', default=None, type=int,
help='build an asymmetric memory bank for point clouds')
parser.add_argument('--ocsvm_nu', default=0.5, type=float,
help='ocsvm nu')
parser.add_argument('--ocsvm_maxiter', default=1000, type=int,
help='ocsvm maxiter')
parser.add_argument('--rm_zero_for_project', default=False, action='store_true',
help='Save predicts results.')
args = parser.parse_args()
run_3d_ads(args)