-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
67 lines (53 loc) · 2.38 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from pandas import read_csv
from cPickle import dump, load
from data import prep_data
from timeit import default_timer
from ib_recommender import recommend
from sys import argv
from scipy.stats.stats import pearsonr
from sklearn.metrics import jaccard_similarity_score
from sklearn.metrics.pairwise import cosine_similarity
if __name__ == '__main__':
start = default_timer()
print argv[:]
s_functions = {
'cosine_similarity': cosine_similarity,
'pearsonr': pearsonr,
'jaccard_similarity_score': jaccard_similarity_score
}
df_activities = read_csv('vi_assignment2_data_v1/train_activity_v2.csv')
df_deals = read_csv('vi_assignment2_data_v1/train_deal_details.csv')
df_items = read_csv('vi_assignment2_data_v1/train_dealitems.csv')
df_test_users = read_csv('vi_assignment2_data_v1/test_activity_v2.csv')
users_to_recommend = df_test_users['user_id'].unique()
prep_data(df_activities, df_deals, df_items, s_functions[argv[1]], int(argv[2]))
users = load(open('users_itembased1.p', 'rb'))
items = load(open('items_itembased1.p', 'rb'))
similarities = load(open('similarities_itembased1.p', 'rb'))
stats = load(open('stats_itembased1.p', 'rb'))
users_train = df_activities['user_id'].unique()
recommended = {}
s1 = default_timer()
for ur in users_to_recommend:
date = None
date = df_test_users[df_test_users['user_id'] == ur].sort_values(['create_time'])['create_time'].iloc[-1]
recommended[ur] = recommend(ur, date, items, users, df_items, similarities, stats, int(argv[3]))
e1 = default_timer()
# print "Recommendation for all users exec time", (e1 - s1) / 60, "min"
dump(recommended, open("recommended_itembased1.p", "wb"))
# what users bought
purchases = {}
for u in df_test_users[['user_id', 'dealitem_id']].itertuples():
index, u_id, di_id = u
try:
purchases[u_id].append(di_id)
except KeyError:
purchases.setdefault(u_id, [])
purchases[u_id].append(di_id)
hits = 0.0
for ur in recommended:
hits += sum([1 for i, r in recommended[ur] if i in purchases[ur]])
print "Precision", hits / (len(recommended) * 10.0)
print "Recall", hits / (sum(len(p) for p in purchases.itervalues()) * 1.0)
end = default_timer()
# print "Execution time app.py", (end - start) / 60, "min"