This repository has been archived by the owner on Jul 1, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLSTM_LL1.py
304 lines (250 loc) · 10.6 KB
/
LSTM_LL1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
''' CS 535 Final Project: Storm Surge Prediction Template File
Created By: Dylan Sanderson, Derek Jackson, Meredith Leung
'''
from __future__ import print_function
from __future__ import division
import os
import pandas as pd
import numpy as np
import scipy.io as io
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
# from tensorboard import SummaryWriter # for pytorch below 1.14
from torch.utils.tensorboard import SummaryWriter # for pytorch above or equal 1.14
from torch.utils.data import Dataset
from torch.utils.data import random_split
from torch.utils.data import DataLoader
from data_reader import CHS_DataSet
torch.manual_seed(1337)
#GLOBAL VARIABLE TO SET WHETHER TO USE GPU FOR TRAINING OR NOT
USE_GPU = True
class Net(nn.Module):
"""
Net Summary:
Net Input: 337x9
- each row correponds to time step.
- 9 input columns correspond to:
0) Central Pressure
1) Far Field pressure
2) Forward Speed
3) Heading
4) Holland B1
5) Radius Max Winds
6) Radius pressure diff
7) Latitude
8) Longitude
Net Output: Max Surge values at each save point
"""
def __init__(self, input_size, hidden_size, output_size, n_layers=1):
super(Net, self).__init__()
self.hidden_size = hidden_size
self.n_layers = n_layers
self.lstm = nn.LSTM(input_size=input_size,
hidden_size=hidden_size,
num_layers=n_layers,
batch_first=True
)
self.dropout = nn.Dropout()
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
batch_size = np.shape(x)[0]
if USE_GPU == True:
hidden = (torch.zeros(self.n_layers, batch_size, self.hidden_size).cuda(),
torch.zeros(self.n_layers, batch_size, self.hidden_size).cuda())
else:
hidden = (torch.zeros(self.n_layers, batch_size, self.hidden_size),
torch.zeros(self.n_layers, batch_size, self.hidden_size))
x = x.float()
out, hidden = self.lstm(x, hidden)
out = out[:,-1,:]
out = self.dropout(out)
out = self.fc(out)
return out
# evaluates regression type prediction
def eval_net(net, dataloader):
correct = 0
total = 0
avg_loss = 0
net.eval()
criterion = nn.MSELoss(reduction='mean')
for i, data in enumerate(dataloader):
inputs, targets = data
if USE_GPU == True:
inputs, targets = Variable(inputs).cuda(), Variable(targets).cuda()
else:
inputs, targets = Variable(inputs), Variable(targets)
outputs = net(inputs.float())
if USE_GPU == True:
if i == 0:
all_outputs = outputs.cpu().detach().numpy()
all_targets = targets.cpu().detach().numpy()
else:
all_outputs = np.vstack((all_outputs, outputs.cpu().detach().numpy()))
all_targets = np.vstack((all_targets, targets.cpu().detach().numpy()))
else:
if i == 0:
all_outputs = outputs.detach().numpy()
all_targets = targets.detach().numpy()
else:
all_outputs = np.vstack((all_outputs, outputs.detach().numpy()))
all_targets = np.vstack((all_targets, targets.detach().numpy()))
predicted = outputs[:]
total += targets.size(0)
correct += abs(targets - predicted).sum()
loss = criterion(outputs.float(), targets.float())
avg_loss += loss.item()
net.train() # Why would I do this? To switch model back to train mode
# average error across all save points (in meters)
correct = correct/(total*targets.size(1))
return avg_loss/total, correct, all_outputs, all_targets
def main(BATCH_SIZE, MAX_EPOCH, hidden_size, n_layers,
box_size, xmin, xmax, ymin, ymax):
ts_delete_step_size = 10
key = 'LSTM_LL1_DO_B{}_h{}_l{}_bb{}_ss{}' .format(BATCH_SIZE, hidden_size, n_layers, box_size,ts_delete_step_size)
# path to data
path_to_data = os.path.join(os.getcwd(), '..', 'data')
# path_to_data = os.path.join(os.getcwd(), 'data')
train_test_split = 0.8 # ratio to split test and train data
# dataset class
dataset = CHS_DataSet(path_to_data,
xmin, xmax,
ymin, ymax,
ts_input=True,
ts_output=False,
pad_type=0.0,
ts_delete_step_size=ts_delete_step_size)
input_size = np.shape(dataset.storm_conds)[2] # number of input
output_size = len(dataset.target[0]) #output size, needed to configure model
print('Number of input dimensions at each time step: {}' .format(input_size))
print('Size of Output: {} save points'.format(output_size))
# computing size of train and test datasets
train_size = int(train_test_split * len(dataset))
test_size = len(dataset) - train_size
lengths = [train_size, test_size]
print('Training examples: {} Testing examples: {}'.format(train_size, test_size))
# splitting the data into train and test sets
trn_ds, tst_ds = random_split(dataset, lengths)
# setting up train and test dataloaders
trn_loader = DataLoader(trn_ds, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)
tst_loader = DataLoader(tst_ds, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)
print('Building model...')
print('\tinput_size: {}' .format(input_size))
print('\thidden_size: {}' .format(hidden_size))
print('\toutput_size/num save points: {}' .format(output_size))
print('\tn_layers: {}' .format(n_layers))
if USE_GPU == True:
net = Net(input_size=input_size,
hidden_size = hidden_size,
output_size=output_size,
n_layers=n_layers).cuda()
else:
net = Net(input_size=input_size,
hidden_size = hidden_size,
output_size=output_size,
n_layers=n_layers)
net = net.float()
net.train()
writer = SummaryWriter(log_dir='./log/template')
criterion = nn.MSELoss()
# optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
optimizer = optim.Adagrad(net.parameters())
epoch_out = []
test_acc_out = []
train_acc_out = []
test_loss_out = []
train_loss_out = []
print('Start training...')
iii = 0 # counter for tensorboard plotting
for epoch in range(MAX_EPOCH): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trn_loader, 0):
# get the inputs
inputs, targets = data
# wrap them in Variable
if USE_GPU == True:
inputs, targets = Variable(inputs).cuda(), Variable(targets).cuda()
else:
inputs, targets = Variable(inputs), Variable(targets)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs.float(), targets.float())
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 100 == 0: # print every 2000 mini-batches
print(' Step: %5d avg_batch_loss: %.5f' %
(i + 1, running_loss / 500))
running_loss = 0.0
print(' Finish training this EPOCH, start evaluating...')
train_loss, train_acc, outputs, targets = eval_net(net, trn_loader)
test_loss, test_acc, outputs, targets = eval_net(net, tst_loader)
if epoch == 0:
outputs_save = outputs
targets_save = targets
best_acc = float(test_acc)
if test_acc < best_acc:
outputs_save = outputs
targets_save = targets
best_acc = float(test_acc)
print('EPOCH: %d train_loss: %.5f train_acc: %.5f test_loss: %.5f test_acc %.5f' %
(epoch+1, train_loss, train_acc, test_loss, test_acc))
epoch_out.append(epoch+1)
test_acc_out.append(float(test_acc))
train_acc_out.append(float(train_acc))
test_loss_out.append(test_loss)
train_loss_out.append(train_loss)
# writer.add_scalars('Loss', {'Train':train_loss ,'Test':test_loss}, epoch+1)
# writer.add_scalars('Accuracy', {'Train':train_acc ,'Test':test_acc}, epoch+1)
# print('outputs size: {}'.format(outputs.size(0)))
# print('outputs size: {}'.format(surge_levels.size(0)))
# for ii in range(outputs.size(0)):
# writer.add_scalars('Comparing Predictions', {'Prediction': outputs[ii][0], 'Reality': surge_levels[ii][0]},iii)
# iii+=1
sp = dataset.sp_list[1:]
model_output = pd.DataFrame(data=outputs_save, columns=sp)
model_targets = pd.DataFrame(data=targets_save, columns=sp)
path_out = os.path.join('LSTM_training_results', 'Model_results', '{}_predict.csv' .format(key))
model_output.to_csv(path_out, index=False)
path_out = os.path.join('LSTM_training_results', 'Model_results', '{}_target.csv' .format(key))
model_targets.to_csv(path_out, index=False)
output = pd.DataFrame()
output['epoch'] = epoch_out
output['test_acc'] = test_acc_out
output['train_acc'] = train_acc_out
output['test_loss'] = test_loss_out
output['train_loss'] = train_loss_out
path_out = os.path.join('LSTM_training_results', '{}_results.csv' .format(key))
output.to_csv(path_out, index=False)
writer.close()
print('Finished Training')
print('Saving model...')
torch.save(net.state_dict(), 'template_model.pth')
if __name__ == "__main__":
BATCH_SIZE = 50 # mini_batch size
MAX_EPOCH = 10 # maximum epoch to train
hidden_size = 25 # size of hidden layer
n_layers = 1 # number of lstm layers
""" defining bounding box """
# small bounding box
xmin, xmax = -74.2754, -73.9374
ymin, ymax = 40.4041, 40.6097
box_size = 'S'
# # medium bounding box
# xmin, xmax = -74.6764, -69.5103
# ymin, ymax = 39.9218, 41.8667
# box_size = 'M'
# # large bounding box
# xmin, xmax = -77.9897, -66.2786
# ymin, ymax = 35.7051, 45.5341
# box_size = 'L'
#run the model
main(BATCH_SIZE, MAX_EPOCH, hidden_size, n_layers,
box_size, xmin, xmax, ymin, ymax)