forked from baiyang2464/chatbot-base-on-Knowledge-Graph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
classifyUtils.py
144 lines (130 loc) · 5.95 KB
/
classifyUtils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import numpy as np
import re
import json
class data_process:
def __init__(self,train_data_path,word_embedings_path,vocb_path,num_classes,max_document_length,dev_sample_percentage=0.2):
self.train_data_path =train_data_path
self.word_embedding_path = word_embedings_path
self.vocb_path = vocb_path
self.num_classes = num_classes
self.max_document_length = max_document_length
self.word_embeddings=None
self.id2word={}
self.word2id={}
self.embedding_length =0
self.dev_sample_percentage = dev_sample_percentage
def load_wordebedding(self):
self.word_embeddings = np.load(self.word_embedding_path)
self.embedding_length = np.shape(self.word_embeddings)[-1]
with open(self.vocb_path, encoding="utf8") as fp:
self.id2word = json.load(fp)
self.word2id = {}
for each in self.id2word: # each 是self.id2word 字典的key 不是(key,value)组合
self.word2id.setdefault(self.id2word[each], each)
def load_raw_data(self, filepath):
"""
Loads MR polarity data from files, splits the data into words and generates labels.
Returns split sentences and labels.
"""
# Load data from files
train_datas = []
with open(filepath, 'r', encoding='utf-8',errors='ignore') as f:
train_datas = f.readlines()
one_hot_labels = []
x_datas = []
for line in train_datas:
parts = line.encode('utf-8').decode('utf-8-sig').strip().split(' ',1)
if len(parts)<2 or (len(parts[1].strip()) == 0):
continue
x_datas.append(parts[1])
one_hot_label = [0]*self.num_classes
label = int(parts[0])
one_hot_label[label] = 1
one_hot_labels.append(one_hot_label)
print (' data size = ' ,len(train_datas))
return [x_datas, np.array(one_hot_labels)]
def load_data(self):
"""Loads starter word-vectors and train/dev/test data."""
print("Loading word2vec and textdata...")
x_text, y = self.load_raw_data(self.train_data_path)
max_document_length = max([len(x.split(" ")) for x in x_text])
print('len(x) = ', len(x_text), ' ', len(y))
print(' max_document_length = ', max_document_length)
x = []
x = self.get_data_idx(x_text)
np.random.seed(10)
shuffle_indices = np.random.permutation(np.arange(len(y)))
x_shuffled = x[shuffle_indices]
y_shuffled = y[shuffle_indices]
dev_sample_index = -1 * int(self.dev_sample_percentage * float(len(y)))
x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]
y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]
return x_train, x_dev, y_train, y_dev
def batch_iter(self, data, batch_size, num_epochs, shuffle=True):
"""
Generates a batch iterator for a dataset.
"""
data = np.array(data)
data_size = len(data)
num_batches_per_epoch = int((len(data)-1)/batch_size) + 1
for epoch in range(num_epochs):
# Shuffle the data at each epoch
if shuffle:
shuffle_indices = np.random.permutation(np.arange(data_size))
shuffled_data = data[shuffle_indices]
else:
shuffled_data = data
for batch_num in range(num_batches_per_epoch):
start_index = batch_num * batch_size
end_index = min((batch_num + 1) * batch_size, data_size)
#print('epoch = %d,batch_num = %d,start = %d,end_idx = %d' % (epoch,batch_num,start_index,end_index))
yield shuffled_data[start_index:end_index]
def get_data_idx(self,text):
"""
Gets index of input data to generate word vector.
"""
text_array = np.zeros([len(text), self.max_document_length], dtype=np.int32)
total_lines = len(text)
for index in range(total_lines):
data_line = text[index].split(" ")[:-1]
for pos in range(min(len(data_line),self.max_document_length)):
text_array[index,pos] = int(self.word2id.get(data_line[pos],0))
return text_array
def handle_input(self,text):
text_array = np.zeros([1, self.max_document_length], dtype=np.int32)
data_line= text.strip().split(" ")
for pos in range(min(len(data_line),self.max_document_length)):
text_array[0, pos] = int(self.word2id.get(data_line[pos], 0))
return text_array
def evalution(self,confusion_matrix):
"""
Gets evalution:precission,recall and f1_score
"""
# tensorflow confusion_matrix api:https://haosdent.gitbooks.io/tensorflow-document/content/api_docs/python/contrib.metrics.html#confusion_matrix.
# 所计算出来的混淆矩阵,列是真实值(也就是期望值),行是预测值
accu = [0]*self.num_classes
column = [0]*self.num_classes
line = [0]*self.num_classes
recall = 0
precision = 0
for i in range(0,self.num_classes):
accu[i] = confusion_matrix[i][i]
for i in range(0,self.num_classes):
for j in range(0,self.num_classes):
column[i]+=confusion_matrix[j][i]
for i in range(0,self.num_classes):
for j in range(0,self.num_classes):
line[i]+=confusion_matrix[i][j]
for i in range(0,self.num_classes):
if column[i] != 0:
recall+=float(accu[i])/column[i]
recall = recall / self.num_classes
for i in range(0,self.num_classes):
if line[i] != 0:
precision+=float(accu[i])/line[i]
precision = precision / self.num_classes
f1_score = (2 * (precision * recall)) / (precision + recall)
return precision,recall,f1_score
if __name__ == "__main__":
x_text, y = load_data_and_labels('')
print (len(x_text))