-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural_network.py
92 lines (76 loc) · 2.99 KB
/
neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import numpy
from numpy.random import normal
from scipy.special import expit
class NeuralNetwork:
"""
Neural network class with 3 layers.
Starting weights initializing from a Gaussian distribution.
Activation function is a sigmoid.
Backpropogation training algorithm.
"""
def __init__(self, input_nodes, hidden_nodes,
output_nodes, learning_rate):
# set number of nodes in each layer
self.input_nodes = input_nodes
self.hidden_nodes = hidden_nodes
self.output_nodes = output_nodes
self.learning_rate = learning_rate
# initialize weights from a normal (Gaussian) distribution
# i - input layer, h - hidden layer, o - output layer
# weights on i --> h
self.w_i_h = normal(
0.0,
pow(self.hidden_nodes, -0.5),
(self.hidden_nodes, self.input_nodes)
)
# weights on h --> o
self.w_h_o = normal(
0.0,
pow(self.output_nodes, -0.5),
(self.output_nodes, self.hidden_nodes)
)
# activation sigmoid function
self.activation_function = lambda x: expit(x)
pass
def calculate(self, inputs):
"""
Calculating input and output signals on every layer
"""
# in and out signals for hidden layer
hidden_inputs = numpy.dot(self.w_i_h, inputs)
hidden_outputs = self.activation_function(hidden_inputs)
# in and out signals for output layer
final_inputs = numpy.dot(self.w_h_o, hidden_outputs)
final_outputs = self.activation_function(final_inputs)
result = {
'hidden_inputs': hidden_inputs,
'hidden_outputs': hidden_outputs,
'final_inputs': final_inputs,
'final_outputs': final_outputs
}
return result
def train(self, inputs_list, targets_list):
"""
Updates weights on connections between neurons
"""
# convert data to two-dimensional array
inputs = numpy.array(inputs_list, ndmin=2).T
targets = numpy.array(targets_list, ndmin=2).T
# in and out values for layers
model_values = self.calculate(inputs)
final_output = model_values['final_output']
hidden_output = model_values['hidden_output']
# calculating errors
output_errors = targets - final_output
hidden_errors = numpy.dot(self.w_h_o.T, output_errors)
# update weights on hidden --> output layers
self.w_h_o += self.learning_rate * numpy.dot(
(output_errors * final_output * (1.0 - final_output)),
numpy.transpose(hidden_output)
)
# update weights on input --> hidden layers
self.w_i_h += self.learning_rate * numpy.dot(
(hidden_errors * hidden_output * (1.0 - hidden_output)),
numpy.transpose(inputs)
)
pass