Skip to content

Latest commit

 

History

History
172 lines (108 loc) · 6.92 KB

FAQ.md

File metadata and controls

172 lines (108 loc) · 6.92 KB

常见问题

Q1: 本项目支持哪些文件格式?

A1: 目前已测试支持 txt、docx、md、pdf 格式文件,更多文件格式请参考 langchain 文档。目前已知文档中若含有特殊字符,可能存在文件无法加载的问题。


Q2: 使用过程中 Python 包 nltk发生了 Resource punkt not found.报错,该如何解决?

A2: 方法一:https://github.com/nltk/nltk_data/raw/gh-pages/packages/tokenizers/punkt.zip 中的 packages/tokenizers 解压,放到 nltk_data/tokenizers 存储路径下。

nltk_data 存储路径可以通过 nltk.data.path 查询。

方法二:执行python代码

import nltk
nltk.download()

Q3: 使用过程中 Python 包 nltk发生了 Resource averaged_perceptron_tagger not found.报错,该如何解决?

A3: 方法一:将 https://github.com/nltk/nltk_data/blob/gh-pages/packages/taggers/averaged_perceptron_tagger.zip 下载,解压放到 nltk_data/taggers 存储路径下。

nltk_data 存储路径可以通过 nltk.data.path 查询。

方法二:执行python代码

import nltk
nltk.download()

Q4: 本项目可否在 colab 中运行?

A4: 可以尝试使用 chatglm-6b-int4 模型在 colab 中运行,需要注意的是,如需在 colab 中运行 Web UI,需将 webui.pydemo.queue(concurrency_count=3).launch( server_name='0.0.0.0', share=False, inbrowser=False)中参数 share设置为 True


Q5: 在 Anaconda 中使用 pip 安装包无效如何解决?

A5: 此问题是系统环境问题,详细见 在Anaconda中使用pip安装包无效问题


Q6: 本项目中所需模型如何下载至本地?

A6: 本项目中使用的模型均为 huggingface.com中可下载的开源模型,以默认选择的 chatglm-6btext2vec-large-chinese模型为例,下载模型可执行如下代码:

# 安装 git lfs
$ git lfs install

# 下载 LLM 模型
$ git clone https://huggingface.co/THUDM/chatglm-6b /your_path/chatglm-6b

# 下载 Embedding 模型
$ git clone https://huggingface.co/GanymedeNil/text2vec-large-chinese /your_path/text2vec

# 模型需要更新时,可打开模型所在文件夹后拉取最新模型文件/代码
$ git pull

Q7: huggingface.com中模型下载速度较慢怎么办?

A7: 可使用本项目用到的模型权重文件百度网盘地址:


Q8: 下载完模型后,如何修改代码以执行本地模型?

A8: 模型下载完成后,请在 configs/model_config.py 文件中,对 embedding_model_dictllm_model_dict参数进行修改,如把 llm_model_dict

embedding_model_dict = {
    "ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
    "ernie-base": "nghuyong/ernie-3.0-base-zh",
    "text2vec": "GanymedeNil/text2vec-large-chinese"
}

修改为

embedding_model_dict = {
                        "ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
                        "ernie-base": "nghuyong/ernie-3.0-base-zh",
                        "text2vec": "/Users/liuqian/Downloads/ChatGLM-6B/text2vec-large-chinese"
}

Q9: 执行 python cli_demo.py过程中,显卡内存爆了,提示 "OutOfMemoryError: CUDA out of memory"

A9: 将 VECTOR_SEARCH_TOP_KLLM_HISTORY_LEN 的值调低,比如 VECTOR_SEARCH_TOP_K = 5LLM_HISTORY_LEN = 2,这样由 querycontext 拼接得到的 prompt 会变短,会减少内存的占用。或者打开量化,请在 configs/model_config.py 文件中,对LOAD_IN_8BIT参数进行修改


Q10: 执行 pip install -r requirements.txt 过程中遇到 python 包,如 langchain 找不到对应版本的问题

A10: 更换 pypi 源后重新安装,如阿里源、清华源等,网络条件允许时建议直接使用 pypi.org 源,具体操作命令如下:

# 使用 pypi 源
$ pip install -r requirements.txt -i https://pypi.python.org/simple

# 使用阿里源
$ pip install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple/

# 使用清华源
$ pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/

Q11: 启动 api.py 时 upload_file 接口抛出 partially initialized module 'charset_normalizer' has no attribute 'md__mypyc' (most likely due to a circular import)

A11: 这是由于 charset_normalizer 模块版本过高导致的,需要降低低 charset_normalizer 的版本,测试在 charset_normalizer==2.1.0 上可用。


Q12: 调用api中的 bing_search_chat 接口时,报出 Failed to establish a new connection: [Errno 110] Connection timed out

A12: 这是因为服务器加了防火墙,需要联系管理员加白名单,如果公司的服务器的话,就别想了GG--!


Q13: 加载 chatglm-6b-int8 或 chatglm-6b-int4 抛出 RuntimeError: Only Tensors of floating point andcomplex dtype can require gradients

A13: 疑为 chatglm 的 quantization 的问题或 torch 版本差异问题,针对已经变为 Parameter 的 torch.zeros 矩阵也执行 Parameter 操作,从而抛出 RuntimeError: Only Tensors of floating point andcomplex dtype can require gradients。解决办法是在 chatglm 项目的原始文件中的 quantization.py 文件 374 行改为:

    try:
        self.weight =Parameter(self.weight.to(kwargs["device"]), requires_grad=False)
    except Exception as e:
        pass
如果上述方式不起作用,则在.cache/hugggingface/modules/目录下针对chatglm项目的原始文件中的quantization.py文件执行上述操作,若软链接不止一个,按照错误提示选择正确的路径。

注:虽然模型可以顺利加载但在cpu上仍存在推理失败的可能:即针对每个问题,模型一直输出gugugugu。

因此,最好不要试图用cpu加载量化模型,原因可能是目前python主流量化包的量化操作是在gpu上执行的,会天然地存在gap。

Q14: 修改配置中路径后,加载 text2vec-large-chinese 依然提示 WARNING: No sentence-transformers model found with name text2vec-large-chinese. Creating a new one with MEAN pooling.

A14: 尝试更换 embedding,如 text2vec-base-chinese,请在 configs/model_config.py 文件中,修改 text2vec-base参数为本地路径,绝对路径或者相对路径均可