-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathgnn.py
99 lines (80 loc) · 3.67 KB
/
gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GCNConv, GATConv, global_max_pool as gmp, global_add_pool as gap,global_mean_pool as gep,global_sort_pool
from torch_geometric.utils import dropout_adj
# GCN based model
class GNNNet(torch.nn.Module):
def __init__(self, n_output=1, num_features_pro=54, num_features_mol=78, output_dim=128, dropout=0.2):
super(GNNNet, self).__init__()
print('GNNNet Loaded')
self.n_output = n_output
self.mol_conv1 = GCNConv(num_features_mol, num_features_mol)
self.mol_conv2 = GCNConv(num_features_mol, num_features_mol * 2)
self.mol_conv3 = GCNConv(num_features_mol * 2, num_features_mol * 4)
self.mol_fc_g1 = torch.nn.Linear(num_features_mol * 4, 1024)
self.mol_fc_g2 = torch.nn.Linear(1024, output_dim)
# self.pro_conv1 = GCNConv(embed_dim, embed_dim)
self.pro_conv1 = GCNConv(num_features_pro, num_features_pro)
self.pro_conv2 = GCNConv(num_features_pro, num_features_pro * 2)
self.pro_conv3 = GCNConv(num_features_pro * 2, num_features_pro * 4)
# self.pro_conv4 = GCNConv(embed_dim * 4, embed_dim * 8)
self.pro_fc_g1 = torch.nn.Linear(num_features_pro * 4, 1024)
self.pro_fc_g2 = torch.nn.Linear(1024, output_dim)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(dropout)
# combined layers
self.fc1 = nn.Linear(2 * output_dim, 1024)
self.fc2 = nn.Linear(1024, 512)
self.out = nn.Linear(512, self.n_output)
def forward(self, data_mol, data_pro):
# get graph input
mol_x, mol_edge_index, mol_batch = data_mol.x, data_mol.edge_index, data_mol.batch
# get protein input
target_x, target_edge_index, target_batch = data_pro.x, data_pro.edge_index, data_pro.batch
# target_seq=data_pro.target
# print('size')
# print('mol_x', mol_x.size(), 'edge_index', mol_edge_index.size(), 'batch', mol_batch.size())
# print('target_x', target_x.size(), 'target_edge_index', target_batch.size(), 'batch', target_batch.size())
x = self.mol_conv1(mol_x, mol_edge_index)
x = self.relu(x)
# mol_edge_index, _ = dropout_adj(mol_edge_index, training=self.training)
x = self.mol_conv2(x, mol_edge_index)
x = self.relu(x)
# mol_edge_index, _ = dropout_adj(mol_edge_index, training=self.training)
x = self.mol_conv3(x, mol_edge_index)
x = self.relu(x)
x = gep(x, mol_batch) # global pooling
# flatten
x = self.relu(self.mol_fc_g1(x))
x = self.dropout(x)
x = self.mol_fc_g2(x)
x = self.dropout(x)
xt = self.pro_conv1(target_x, target_edge_index)
xt = self.relu(xt)
# target_edge_index, _ = dropout_adj(target_edge_index, training=self.training)
xt = self.pro_conv2(xt, target_edge_index)
xt = self.relu(xt)
# target_edge_index, _ = dropout_adj(target_edge_index, training=self.training)
xt = self.pro_conv3(xt, target_edge_index)
xt = self.relu(xt)
# xt = self.pro_conv4(xt, target_edge_index)
# xt = self.relu(xt)
xt = gep(xt, target_batch) # global pooling
# flatten
xt = self.relu(self.pro_fc_g1(xt))
xt = self.dropout(xt)
xt = self.pro_fc_g2(xt)
xt = self.dropout(xt)
# print(x.size(), xt.size())
# concat
xc = torch.cat((x, xt), 1)
# add some dense layers
xc = self.fc1(xc)
xc = self.relu(xc)
xc = self.dropout(xc)
xc = self.fc2(xc)
xc = self.relu(xc)
xc = self.dropout(xc)
out = self.out(xc)
return out