-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathYOLO-V2-Video-Dector.py
103 lines (78 loc) · 3.2 KB
/
YOLO-V2-Video-Dector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# For more info: http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_gui/py_video_display/py_video_display.html
import numpy as np
import cv2
import os
COLOR_RGB = (255, 102, 255) # Text and Rectangle color : Purple
FILE_INPUT = 'input.mp4'
FILE_OUTPUT = 'output.avi'
# Checks and deletes the output file
# You cant have a existing file or it will through an error
if os.path.isfile(FILE_OUTPUT):
os.remove(FILE_OUTPUT)
# Playing video from file:
# cap = cv2.VideoCapture('vtest.avi')
# Capturing video from webcam:
cap = cv2.VideoCapture(FILE_INPUT)
FPS_INPUT = cap.get(cv2.CAP_PROP_FPS)
currentFrame = 0
width = cap.get(3)
height = cap.get(4)
# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter(FILE_OUTPUT,fourcc, FPS_INPUT, (int(width),int(height)))
# Minimum confidence threshold. Increasing this will improve false positives but will also reduce detection rate.
min_confidence=0.14
model = 'yolov2.weights'
config = 'yolov2.cfg'
#Load names of classes
classes = None
with open('labels.txt', 'rt') as f:
classes = f.read().rstrip('\n').split('\n')
print(classes)
# Load weights and construct graph
net = cv2.dnn.readNetFromDarknet(config, model)
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_DEFAULT)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
winName = 'Running YOLO Model'
cv2.namedWindow(winName, cv2.WINDOW_NORMAL)
while(cap.isOpened()):
# Capture frame-by-frame
ret, frame = cap.read()
if ret == True:
# Handles the mirroring of the current frame
# frame = cv2.flip(frame,1)
blob = cv2.dnn.blobFromImage(frame, 1.0 / 255.0, (416, 416), True, crop=False)
net.setInput(blob)
predictions = net.forward()
probability_index = 5
for i in range(predictions.shape[0]):
prob_arr = predictions[i][probability_index:]
class_index = prob_arr.argmax(axis=0)
confidence = prob_arr[class_index]
# x_center, y_center: center of box, width_box, height_box: width, height of box
if confidence > min_confidence:
x_center = predictions[i][0] * width
y_center = predictions[i][1] * height
width_box = predictions[i][2] * width
height_box = predictions[i][3] * height
x1 = int(x_center - width_box * 0.5)
y1 = int(y_center - height_box * 0.5)
x2 = int(x_center + width_box * 0.5)
y2 = int(y_center + height_box * 0.5)
cv2.rectangle(frame, (x1, y1), (x2, y2), COLOR_RGB, 3)
cv2.putText(frame, classes[class_index] + " " + "{0:.1f}".format(confidence), (x1, y1 - 20),
cv2.FONT_HERSHEY_SIMPLEX, 1, COLOR_RGB, 2, cv2.LINE_AA)
# Saves for video
out.write(frame)
# Display the resulting frame
cv2.imshow('frame',frame)
else:
break
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# To stop duplicate images
currentFrame += 1
# When everything done, release the capture
cap.release()
out.release()
cv2.destroyAllWindows()