forked from YuLab-SMU/treedata-book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path10_ggtree_exts.Rmd
513 lines (427 loc) · 23.1 KB
/
10_ggtree_exts.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# (PART\*) Part III: ggtree extensions {-}
\newpage
# ggtreeExtra for presenting data on a circular layout {#chapter10}
## Introduction
The `r Biocpkg("ggtree")` package [@yu_ggtree:_2017] provides programmable visualization and annotation of [phylogenetic trees](#chapter5) and [other tree-like structures](#chapter9). It supports visualizing tree data in multiple layers or with the tree side by side (see also [Chapter 7](#chapter7) and [@yu_two_2018]). Although `r Biocpkg("ggtree")` supports [many layouts](#tree-layouts), the `geom_facet()` layer only works with `rectangular`, `roundrect`, `ellipse`, and `slanted` layouts to present tree data on different panels. There is no direct support in `r Biocpkg("ggtree")` to present data on the outer rings of a tree in `circular`, `fan`, and `radial` layouts. To solve this issue, we developed the `r Biocpkg("ggtreeExtra")` package, which allows users to align associated graph layers in outer rings of circular layout tree. In addition, it also works with a `rectangular` tree layout (Figure \@ref(fig:HMPplot2)).
## Aligning graphs to the tree based on a tree structure {#geom-fruit1}
The `r Biocpkg("ggtreeExtra")` package provides a layer function, `geom_fruit()`, to align graphs with the tree side by side. Similar to the `geom_facet()` layout described in [Chapter 7](#chapter7), `geom_fruit()` internally re-orders the input data based on the tree structure and visualizes the data using a specified geometric layer function with user-provided aesthetic mapping and non-variable setting. The graph will be displayed on the outer ring of the tree.
The `geom_fruit()` is designed to work with most `geom` layers defined in `r CRANpkg("ggplot2")` and its extensions. The position of the graph (*i.e.* on the outer ring) is controlled by the `position` parameter, which accepts a `Position` object. The default value of the `position` parameter is 'auto' and the `geom_fruit()` layer will guess and determine (hopefully) a suitable position for the specified geometric layer. That means using `position_stackx()` for `geom_bar()`, `position_dodgex()` for `geom_violin()` and `geom_boxplot()`, and `position_identityx()` for others (*e.g.* `geom_point()` and `geom_tile()`, *etc*). A geometric layer that has a `position` parameter should be compatible with `geom_fruit()`, as it allows using position functions defined in the `r Biocpkg("ggtreeExtra")` package to adjust output layer position. Besides, the `geom_fruit()` layer allows setting `axis` and background grid lines for the current layer using the `axis.params` and `grid.params` parameters respectively.
The following example uses microbiome data provided in the `r Biocpkg("phyloseq")` package and a boxplot is employed to visualize species abundance data. The `geom_fruit()` layer automatically re-arranges the abundance data according to the circular tree structure and visualizes the data using the specific `geom` function (*i.e.* `geom_boxplot()`). Visualizing this dataset using `geom_density_ridges()` with `geom_facet()` can be found in Fig. 1 of [@yu_two_2018].
(ref:psboxplotscap) Phylogenetic tree with OTU abundance distribution.
(ref:psboxplotcap) **Phylogenetic tree with OTU abundance distribution**. Species abundance distribution was aligned to the tree and visualized as boxplots. The Phylum information was used to color symbolic points on the tree and also species abundance distributions.
```{r psbox, fig.width=9, fig.height=7, message=FALSE, fig.cap="(ref:psboxplotcap)", fig.scap="(ref:psboxplotscap)", out.extra='', warning=FALSE, out.width="100%"}
library(ggtreeExtra)
library(ggtree)
library(phyloseq)
library(dplyr)
data("GlobalPatterns")
GP <- GlobalPatterns
GP <- prune_taxa(taxa_sums(GP) > 600, GP)
sample_data(GP)$human <- get_variable(GP, "SampleType") %in%
c("Feces", "Skin")
mergedGP <- merge_samples(GP, "SampleType")
mergedGP <- rarefy_even_depth(mergedGP,rngseed=394582)
mergedGP <- tax_glom(mergedGP,"Order")
melt_simple <- psmelt(mergedGP) %>%
filter(Abundance < 120) %>%
select(OTU, val=Abundance)
p <- ggtree(mergedGP, layout="fan", open.angle=10) +
geom_tippoint(mapping=aes(color=Phylum),
size=1.5,
show.legend=FALSE)
p <- rotate_tree(p, -90)
p <- p +
geom_fruit(
data=melt_simple,
geom=geom_boxplot,
mapping = aes(
y=OTU,
x=val,
group=label,
fill=Phylum,
),
size=.2,
outlier.size=0.5,
outlier.stroke=0.08,
outlier.shape=21,
axis.params=list(
axis = "x",
text.size = 1.8,
hjust = 1,
vjust = 0.5,
nbreak = 3,
),
grid.params=list()
)
p <- p +
scale_fill_discrete(
name="Phyla",
guide=guide_legend(keywidth=0.8, keyheight=0.8, ncol=1)
) +
theme(
legend.title=element_text(size=9),
legend.text=element_text(size=7)
)
p
```
## Aligning multiple graphs to the tree for multi-dimensional data {#geom-fruit2}
We are able to add multiple `geom_fruit()` layers to a tree and the circular layout is indeed more compact and efficient for multi-dimensional data. This example reproduces Fig.2 of [@morgan2013HMP]. The data is provided by GraPhlAn [@GraPhlAn], which contained the relative abundance of the microbiome at different body sites. This example demonstrates the ability to add multiple layers (heat map and bar plot) to present different types of data (Figure \@ref(fig:HMPplot)).
(ref:HMPscap) Presenting microbiome data (abundance and location) on a phylogenetic tree.
(ref:HMPcap) **Presenting microbiome data (abundance and location) on a phylogenetic tree.** The tree was annotated with symbolic points, highlighted clades, and clade labels. Two `geom_fruit()` layers were used to visualize location and abundance information.
```{r HMPplot, dev='png', dpi=300, fig.width=7, fig.height=7, warning=FALSE, message=FALSE, fig.cap="(ref:HMPcap)", fig.scap="(ref:HMPscap)", out.extra='', warning=FALSE, out.width="100%"}
library(ggtreeExtra)
library(ggtree)
library(treeio)
library(tidytree)
library(ggstar)
library(ggplot2)
library(ggnewscale)
library(TDbook)
# load data from TDbook, including tree_hmptree,
# df_tippoint (the abundance and types of microbes),
# df_ring_heatmap (the abundance of microbes at different body sites),
# and df_barplot_attr (the abundance of microbes of greatest prevalence)
tree <- tree_hmptree
dat1 <- df_tippoint
dat2 <- df_ring_heatmap
dat3 <- df_barplot_attr
# adjust the order
dat2$Sites <- factor(dat2$Sites,
levels=c("Stool (prevalence)", "Cheek (prevalence)",
"Plaque (prevalence)","Tongue (prevalence)",
"Nose (prevalence)", "Vagina (prevalence)",
"Skin (prevalence)"))
dat3$Sites <- factor(dat3$Sites,
levels=c("Stool (prevalence)", "Cheek (prevalence)",
"Plaque (prevalence)", "Tongue (prevalence)",
"Nose (prevalence)", "Vagina (prevalence)",
"Skin (prevalence)"))
# extract the clade label information. Because some nodes of tree are annotated to genera,
# which can be displayed with high light using ggtree.
nodeids <- nodeid(tree, tree$node.label[nchar(tree$node.label)>4])
nodedf <- data.frame(node=nodeids)
nodelab <- gsub("[\\.0-9]", "", tree$node.label[nchar(tree$node.label)>4])
# The layers of clade and hightlight
poslist <- c(1.6, 1.4, 1.6, 0.8, 0.1, 0.25, 1.6, 1.6, 1.2, 0.4,
1.2, 1.8, 0.3, 0.8, 0.4, 0.3, 0.4, 0.4, 0.4, 0.6,
0.3, 0.4, 0.3)
labdf <- data.frame(node=nodeids, label=nodelab, pos=poslist)
# The circular layout tree.
p <- ggtree(tree, layout="fan", size=0.15, open.angle=5) +
geom_hilight(data=nodedf, mapping=aes(node=node),
extendto=6.8, alpha=0.3, fill="grey", color="grey50",
size=0.05) +
geom_cladelab(data=labdf,
mapping=aes(node=node,
label=label,
offset.text=pos),
hjust=0.5,
angle="auto",
barsize=NA,
horizontal=FALSE,
fontsize=1.4,
fontface="italic"
)
p <- p %<+% dat1 + geom_star(
mapping=aes(fill=Phylum, starshape=Type, size=Size),
position="identity",starstroke=0.1) +
scale_fill_manual(values=c("#FFC125","#87CEFA","#7B68EE","#808080",
"#800080", "#9ACD32","#D15FEE","#FFC0CB",
"#EE6A50","#8DEEEE", "#006400","#800000",
"#B0171F","#191970"),
guide=guide_legend(keywidth = 0.5,
keyheight = 0.5, order=1,
override.aes=list(starshape=15)),
na.translate=FALSE)+
scale_starshape_manual(values=c(15, 1),
guide=guide_legend(keywidth = 0.5,
keyheight = 0.5, order=2),
na.translate=FALSE)+
scale_size_continuous(range = c(1, 2.5),
guide = guide_legend(keywidth = 0.5,
keyheight = 0.5, order=3,
override.aes=list(starshape=15)))
p <- p + new_scale_fill() +
geom_fruit(data=dat2, geom=geom_tile,
mapping=aes(y=ID, x=Sites, alpha=Abundance, fill=Sites),
color = "grey50", offset = 0.04,size = 0.02)+
scale_alpha_continuous(range=c(0, 1),
guide=guide_legend(keywidth = 0.3,
keyheight = 0.3, order=5)) +
geom_fruit(data=dat3, geom=geom_bar,
mapping=aes(y=ID, x=HigherAbundance, fill=Sites),
pwidth=0.38,
orientation="y",
stat="identity",
) +
scale_fill_manual(values=c("#0000FF","#FFA500","#FF0000",
"#800000", "#006400","#800080","#696969"),
guide=guide_legend(keywidth = 0.3,
keyheight = 0.3, order=4))+
geom_treescale(fontsize=2, linesize=0.3, x=4.9, y=0.1) +
theme(legend.position=c(0.93, 0.5),
legend.background=element_rect(fill=NA),
legend.title=element_text(size=6.5),
legend.text=element_text(size=4.5),
legend.spacing.y = unit(0.02, "cm"),
)
p
```
The shape of the tip points indicates the types of microbes (commensal microbes or potential pathogens). The transparency of the heatmap indicates the abundance of the microbes, and the colors of the heatmap indicate different sites of the human body. The bar plot indicates the relative abundance of the most prevalent species at the body sites. The node labels contain taxonomy information in this example, and the information was used to highlight and label corresponding clades using `geom_hilight()` and `geom_cladelab()` respectively.
The `geom_fruit()` layer supports rectangular layout. Users can either add a `geom_fruit()` layer to a rectangular tree (e.g. `ggtree(tree_object) + geom_fruit(...)`) or use `layout_rectangular()` to transform a circular layout tree to a rectangular layout tree as demonstrated in Figure \@ref(fig:HMPplot2).
(ref:HMP2scap) Illustration of using `geom_fruit()` in rectangular tree layout.
(ref:HMP2cap) **Illustration of using `geom_fruit()` in rectangular tree layout.** The figure was produced by transforming Figure \@ref(fig:HMPplot) using the rectangular layout. Transforming a rectangular layout tree to a circular layout tree is also supported.
```{r HMPplot2, dev='png', dpi=300, fig.width=7, fig.height=7, warning=FALSE, message=FALSE, fig.cap="(ref:HMP2cap)", fig.scap="(ref:HMP2scap)", out.extra='', warning=FALSE, out.width="100%"}
p + layout_rectangular() +
theme(legend.position=c(.05, .7))
```
## Examples for population genetics
The `r Biocpkg("ggtree")` [@yu_ggtree:_2017] and `r Biocpkg("ggtreeExtra")` packages are designed as general tools and can be applied to many research fields, such as infectious disease epidemiology, metagenome, population genetics, evolutionary biology, and ecology. We have introduced examples for metagenome research (Figure \@ref(fig:psbox) and Figure \@ref(fig:HMPplot)). In this session, we present examples for population genetics by reproducing Fig. 4 of [@Chowe:_2020] and Fig 1 of [@RN46:_2015].
(ref:Cauriscap) Antifungal susceptibility and point mutations in drug targets in Candida Auris.
(ref:Cauricap) **Antifungal susceptibility and point mutations in drug targets in *Candida Auris* **.
(ref:Styphiscap) Population structure of the 1,832 S. Typhi isolates.
(ref:Styphicap) **Population structure of the 1,832 *S. Typhi* isolates**.
```{r Caurisplot, fig.width=7, fig.height=7, warning=FALSE, message=FALSE, fig.cap="(ref:Cauricap)", fig.scap="(ref:Cauriscap)", out.extra='', warning=FALSE, out.width="100%"}
library(ggtree)
library(ggtreeExtra)
library(ggplot2)
library(ggnewscale)
library(reshape2)
library(dplyr)
library(tidytree)
library(ggstar)
library(TDbook)
# load tr and dat from the TDbook package
dat <- df_Candidaauris_data
tr <- tree_Candidaauris
countries <- c("Canada", "United States",
"Colombia", "Panama",
"Venezuela", "France",
"Germany", "Spain",
"UK", "India",
"Israel", "Pakistan",
"Saudi Arabia", "United Arab Emirates",
"Kenya", "South Africa",
"Japan", "South Korea",
"Australia")
# For the tip points
dat1 <- dat %>% select(c("ID", "COUNTRY", "COUNTRY__colour"))
dat1$COUNTRY <- factor(dat1$COUNTRY, levels=countries)
COUNTRYcolors <- dat1[match(countries,dat$COUNTRY),"COUNTRY__colour"]
# For the heatmap layer
dat2 <- dat %>% select(c("ID", "FCZ", "AMB", "MCF"))
dat2 <- melt(dat2,id="ID", variable.name="Antifungal", value.name="type")
dat2$type <- paste(dat2$Antifungal, dat2$type)
dat2$type[grepl("Not_", dat2$type)] = "Susceptible"
dat2$Antifungal <- factor(dat2$Antifungal, levels=c("FCZ", "AMB", "MCF"))
dat2$type <- factor(dat2$type,
levels=c("FCZ Resistant",
"AMB Resistant",
"MCF Resistant",
"Susceptible"))
# For the points layer
dat3 <- dat %>% select(c("ID", "ERG11", "FKS1")) %>%
melt(id="ID", variable.name="point", value.name="mutation")
dat3$mutation <- paste(dat3$point, dat3$mutation)
dat3$mutation[grepl("WT", dat3$mutation)] <- NA
dat3$mutation <- factor(dat3$mutation,
levels=c("ERG11 Y132F", "ERG11 K143R",
"ERG11 F126L", "FKS1 S639Y/P/F"))
# For the clade group
dat4 <- dat %>% select(c("ID", "CLADE"))
dat4 <- aggregate(.~CLADE, dat4, FUN=paste, collapse=",")
clades <- lapply(dat4$ID, function(x){unlist(strsplit(x,split=","))})
names(clades) <- dat4$CLADE
tr <- groupOTU(tr, clades, "Clade")
Clade <- NULL
p <- ggtree(tr=tr, layout="fan", open.angle=15, size=0.2, aes(colour=Clade)) +
scale_colour_manual(
values=c("black","#69B920","#9C2E88","#F74B00","#60C3DB"),
labels=c("","I", "II", "III", "IV"),
guide=guide_legend(keywidth=0.5,
keyheight=0.5,
order=1,
override.aes=list(linetype=c("0"=NA,
"Clade1"=1,
"Clade2"=1,
"Clade3"=1,
"Clade4"=1
)
)
)
) +
new_scale_colour()
p1 <- p %<+% dat1 +
geom_tippoint(aes(colour=COUNTRY),
alpha=0) +
geom_tiplab(aes(colour=COUNTRY),
align=TRUE,
linetype=3,
size=1,
linesize=0.2,
show.legend=FALSE
) +
scale_colour_manual(
name="Country labels",
values=COUNTRYcolors,
guide=guide_legend(keywidth=0.5,
keyheight=0.5,
order=2,
override.aes=list(size=2,alpha=1))
)
p2 <- p1 +
geom_fruit(
data=dat2,
geom=geom_tile,
mapping=aes(x=Antifungal, y=ID, fill=type),
width=0.1,
color="white",
pwidth=0.1,
offset=0.15
) +
scale_fill_manual(
name="Antifungal susceptibility",
values=c("#595959", "#B30000", "#020099", "#E6E6E6"),
na.translate=FALSE,
guide=guide_legend(keywidth=0.5,
keyheight=0.5,
order=3
)
) +
new_scale_fill()
p3 <- p2 +
geom_fruit(
data=dat3,
geom=geom_star,
mapping=aes(x=mutation, y=ID, fill=mutation, starshape=point),
size=1,
starstroke=0,
pwidth=0.1,
inherit.aes = FALSE,
grid.params=list(
linetype=3,
size=0.2
)
) +
scale_fill_manual(
name="Point mutations",
values=c("#329901", "#0600FF", "#FF0100", "#9900CC"),
guide=guide_legend(keywidth=0.5, keyheight=0.5, order=4,
override.aes=list(
starshape=c("ERG11 Y132F"=15,
"ERG11 K143R"=15,
"ERG11 F126L"=15,
"FKS1 S639Y/P/F"=1),
size=2)
),
na.translate=FALSE,
) +
scale_starshape_manual(
values=c(15, 1),
guide="none"
) +
theme(
legend.background=element_rect(fill=NA),
legend.title=element_text(size=7),
legend.text=element_text(size=5.5),
legend.spacing.y = unit(0.02, "cm")
)
p3
```
In this example, the phylogenetic tree is annotated with different colors to display different clades. The external heatmaps present the susceptibility to fluconazole (FCZ), amphotericin B (AMB), and micafungin (MCF). The external points display the point mutations in lanosterol 14-alpha-demethylase ERG11 (Y132F, K143R, and F126L) and beta-1,3-D-glucan synthase FKS1 (S639Y/P/F) associated with resistance [@Chowe:_2020].
```{r Styphiplot, fig.width=7, fig.height=7, warning=FALSE, message=FALSE, fig.cap="(ref:Styphicap)", fig.scap="(ref:Styphiscap)", out.extra='', warning=FALSE, out.width="100%"}
library(ggtreeExtra)
library(ggtree)
library(ggplot2)
library(ggnewscale)
library(treeio)
library(tidytree)
library(dplyr)
library(ggstar)
library(TDbook)
# load tree_NJIDqgsS and df_NJIDqgsS from TDbook
tr <- tree_NJIDqgsS
metada <- df_NJIDqgsS
metadata <- metada %>%
select(c("id", "country", "country__colour",
"year", "year__colour", "haplotype"))
metadata$haplotype[nchar(metadata$haplotype) == 0] <- NA
countrycolors <- metada %>%
select(c("country", "country__colour")) %>%
distinct()
yearcolors <- metada %>%
select(c("year", "year__colour")) %>%
distinct()
yearcolors <- yearcolors[order(yearcolors$year, decreasing=TRUE),]
metadata$country <- factor(metadata$country, levels=countrycolors$country)
metadata$year <- factor(metadata$year, levels=yearcolors$year)
p <- ggtree(tr, layout="fan", open.angle=15, size=0.1)
p <- p %<+% metadata
p1 <-p +
geom_tippoint(
mapping=aes(colour=country),
size=1.5,
stroke=0,
alpha=0.4
) +
scale_colour_manual(
name="Country",
values=countrycolors$country__colour,
guide=guide_legend(keywidth=0.3,
keyheight=0.3,
ncol=2,
override.aes=list(size=2,alpha=1),
order=1)
) +
theme(
legend.title=element_text(size=5),
legend.text=element_text(size=4),
legend.spacing.y = unit(0.02, "cm")
)
p2 <-p1 +
geom_fruit(
geom=geom_star,
mapping=aes(fill=haplotype),
starshape=26,
color=NA,
size=2,
starstroke=0,
offset=0,
) +
scale_fill_manual(
name="Haplotype",
values=c("red"),
guide=guide_legend(
keywidth=0.3,
keyheight=0.3,
order=3
),
na.translate=FALSE
)
p3 <-p2 +
new_scale_fill() +
geom_fruit(
geom=geom_tile,
mapping=aes(fill=year),
width=0.002,
offset=0.1
) +
scale_fill_manual(
name="Year",
values=yearcolors$year__colour,
guide=guide_legend(keywidth=0.3, keyheight=0.3, ncol=2, order=2)
) +
theme(
legend.title=element_text(size=6),
legend.text=element_text(size=4.5),
legend.spacing.y = unit(0.02, "cm")
)
p3
```
This is a rooted maximum-likelihood tree of *S. Typhi* inferred from 22,145 SNPs [@RN46:_2015], the colors of the tip points represent the geographical origin of the isolates, and the red symbolic points indicate the haplotype of H58 lineage. The color of the external heatmap indicates the years of isolation [@RN46:_2015].
## Summary {#summary10}
<!--
`r Biocpkg("ggtreeExtra")` provides function, `geom_fruit` to align graphs to the tree. But the associated graphs will align in different position. So we also developed `geom_fruit_list` to add multiple layers in the same position.
such as `geom_star` in `r CRANpkg("ggstar")`, which provides the regular polygon layer for easily discernible shapes based on the grammar of `r CRANpkg("ggplot2")`.
-->
Compared to `geom_facet()`, `geom_fruit()` layer provided in `r Biocpkg("ggtreeExtra")` is a better implementation of Method 2 proposed by [@yu_two_2018]. The `geom_facet()` and `geom_fruit()` have the same design philosophy and have a similar user interface. They rely on other geometric layers to visualize the tree-associated data. These dependent layers are provided by `r CRANpkg("ggplot2")` and its extension packages, including `r Biocpkg("ggtree")`. As more and more layers are implemented by the `r CRANpkg("ggplot2")` community, the types of data and graphics that `geom_facet()` and `geom_fruit()` can present will also increase.