-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRL_AtoB.py
65 lines (52 loc) · 1.39 KB
/
RL_AtoB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import random
def optimized_Q_route(R, source, destination):
n = len(R)
iterations=10000
lr=0.8
Q = [[0 for x in range(n)] for y in range(n)]
dest = ord(destination)-65
R[dest][dest] = 100
for i in range(n):
if R[i][dest]==0:
R[i][dest]=100
#Training begins
for s in range(0,iterations):
starter=[]
for i in range(0,n):
starter.append(chr(i+65))
start=random.choice(starter)
k=ord(start)-65
randomizer_array=[]
for j in range(0,n):
if R[k][j]>-1:
randomizer_array.append(j)
next=random.choice(randomizer_array)
largest=[]
for x in range(0,n):
if R[next][x]>-1:
largest.append(Q[next][x])
p=max(largest)
Q[k][next]=R[k][next]+lr*p
k=next
for i in range(0, n):
for j in range(0, n):
Q[i][j]=int(Q[i][j])
#Testing
track=[]
seq = [source]
u=ord(source)-65
while(u!=dest):
for j in range(0, n):
if Q[u][j]>0:
track.append(Q[u][j])
t=max(track)
tx=[]
for y in range(0,n):
if Q[u][y]==t:
tx.append(y)
tind=random.choice(tx)
seq.append(ord(chr(tind+65))-65)
u=tind
if u==dest:
break
return seq