Skip to content

Latest commit

 

History

History
202 lines (151 loc) · 5.92 KB

README.md

File metadata and controls

202 lines (151 loc) · 5.92 KB

InPlotSampling

Project Status: WIP – Initial development is in progress, but there has not yet been a stable, usable release suitable for the public. Codecov test coverage R build status pkgdown
minimal R version packageversion Last-changedate Licence

The InPlotSampling package provides a way for researchers to easily implement these sampling methods in practice.

  • Judgment post-stratified (JPS) sampling
  • Ranked set sampling (RSS)
  • Porbability-proportional to size (PPS) sampling
  • Spatially balanced sampling (SBS)
  • Two-stage cluster sampling

Table of Contents

Sampling Methods

JPS Sampling

Sampling is made following the diagram below.

JPS sampling diagram

JPS sampling diagram

RSS

Sampling is made following the diagram below.

RSS diagram

RSS diagram

Installation

Use the following code to install this package:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("AAGI-AUS/InPlotSampling", upgrade = FALSE)

Examples

JPS Sample and Estimator

JPS sample and estimator
set.seed(112)
population_size <- 600
# the number of samples to be ranked in each set
H <- 3

with_replacement <- FALSE
sigma <- 4
mu <- 10
n_rankers <- 3
# sample size
n <- 30

rhos <- rep(0.75, n_rankers)
taus <- sigma * sqrt(1 / rhos^2 - 1)
population <- qnorm((1:population_size) / (population_size + 1), mu, sigma)

data <- InPlotSampling::jps_sample(population, n, H, taus, n_rankers, with_replacement)
data <- data[order(data[, 2]), ]

InPlotSampling::rss_jps_estimate(
  data,
  set_size = H,
  method = "JPS",
  confidence = 0.80,
  replace = with_replacement,
  model_based = FALSE,
  pop_size = population_size
)
#>          Estimator Estimate Standard Error 80% Confidence intervals
#> 1       UnWeighted    9.570          0.526               8.88,10.26
#> 2      Sd.Weighted    9.595          0.569             8.849,10.341
#> 3 Aggregate Weight    9.542          0.500             8.887,10.198
#> 4     JPS Estimate    9.502          0.650             8.651,10.354
#> 5     SRS estimate    9.793          0.783             8.766,10.821
#> 6          Minimum    9.542          0.500             8.887,10.198

SBS PPS Sample and Estimator

SBS PPS sample and estimator
set.seed(112)

# SBS sample size, PPS sample size
sample_sizes <- c(5, 5)

n_population <- 233
k <- 0:(n_population - 1)
x1 <- sample(1:13, n_population, replace = TRUE) / 13
x2 <- sample(1:8, n_population, replace = TRUE) / 8
y <- (x1 + x2) * runif(n = n_population, min = 1, max = 2) + 1
measured_sizes <- y * runif(n = n_population, min = 0, max = 4)

population <- matrix(cbind(k, x1, x2, measured_sizes), ncol = 4)
sample_result <- sbs_pps_sample(population, sample_sizes)

# estimate the population mean and construct a confidence interval
df_sample <- sample_result$sample
sample_id <- df_sample[, 1]
y_sample <- y[sample_id]

sbs_pps_estimates <- sbs_pps_estimate(
  population, sample_sizes, y_sample, df_sample,
  n_bootstrap = 100, alpha = 0.05
)
print(sbs_pps_estimates)
#>   n1 n2 Estimate  St.error 95% Confidence intervals
#> 1  5  5    2.849 0.1760682              2.451,3.247

Citing this package

This package can be cited using citation("InPlotSampling") which generates

To cite package 'InPlotSampling' in publications use:

  Ozturk O, Rogers S, Kravchuk O, Kasprzak P (2021). _InPlotSampling:
  Easing the Application of Ranked Set Sampling in Practice_. R package
  version 0.1.0, <https://aagi-aus.github.io/InPlotSampling/>.

A BibTeX entry for LaTeX users is

  @Manual{,
    title = {InPlotSampling: Easing the Application of Ranked Set Sampling in Practice},
    author = {Omer Ozturk and Sam Rogers and Olena Kravchuk and Peter Kasprzak},
    year = {2021},
    note = {R package version 0.1.0},
    url = {https://aagi-aus.github.io/InPlotSampling/},
  }

Related Reference

Ozturk, Omer, and Olena Kravchuk. 2021. “Judgment Post-Stratified Assessment Combining Ranking Information from Multiple Sources, with a Field Phenotyping Example.” Journal of Agricultural, Biological and Environmental Statistics. https://doi.org/10.1007/s13253-021-00439-1.