-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmetric.py
255 lines (213 loc) · 9.97 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import tiktoken
import numpy as np
from time import time
from numpy import cov
from numpy import trace
from numpy import iscomplexobj
from scipy.linalg import sqrtm
import os
# calculate inception score with Keras
import torch
import argparse
import csv
from sentence_transformers import SentenceTransformer
from tqdm import tqdm
from datasets import load_dataset
from dpsda.logging import *
from utility_eval.compute_mauve import *
from utility_eval.precision_recall import *
from apis.utils import set_seed
import time
os.environ["TOKENIZERS_PARALLELISM"] = "false"
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
def num_tokens_from_string(string, encoding):
"""Returns the number of tokens in a text string."""
try:
num_tokens = len(encoding.encode(string))
except:
num_tokens = 0
return num_tokens
# calculate frechet inception distance
def calculate_fid(act1, act2):
# calculate mean and covariance statistics
mu1, sigma1 = act1.mean(axis=0), cov(act1, rowvar=False)
mu2, sigma2 = act2.mean(axis=0), cov(act2, rowvar=False)
# calculate sum squared difference between means
ssdiff = np.sum((mu1 - mu2) ** 2.0)
# calculate sqrt of product between cov
covmean = sqrtm(sigma1.dot(sigma2))
# check and correct imaginary numbers from sqrt
if iscomplexobj(covmean):
covmean = covmean.real
# calculate score
fid = ssdiff + trace(sigma1 + sigma2 - 2.0 * covmean)
return fid
def calculate_all_metrics(synthetic_embeddings, original_embeddings, k=3):
method_name = ""
p_feats = synthetic_embeddings # feature dimension = 1024
q_feats = original_embeddings
result = compute_mauve(p_feats, q_feats)
print("MAUVE: ", result.mauve)
p_hist, q_hist = result.p_hist, result.q_hist
kl, tv, wass = calculate_other_metrics(p_hist, q_hist)
state = knn_precision_recall_features(
original_embeddings, synthetic_embeddings, nhood_sizes=[k])
print(state)
from geomloss import SamplesLoss # See also ImagesLoss, VolumesLoss
# feature dimension = 1024
p_feats = torch.from_numpy(synthetic_embeddings)
q_feats = torch.from_numpy(original_embeddings)
# Define a Sinkhorn (~Wasserstein) loss between sampled measures
loss = SamplesLoss(loss="sinkhorn", p=2, blur=.05)
# By default, use constant weights = 1/number of samples
sinkhorn_loss = loss(p_feats, q_feats).item()
print("Sinkhorn loss: %.3f" % sinkhorn_loss)
return state['precision'], state['recall'], state['f1'], result.mauve, kl, tv, wass, sinkhorn_loss
def eval_one_file(syn_fname, all_original_embeddings, model, csv_fname, batch_size, private_data_size, num_run, k, dataset="yelp", min_token_threshold=100):
syn_data = load_dataset("csv", data_files=syn_fname)
synthetic_data = []
if dataset == "yelp":
for index, d in enumerate(syn_data['train']['text']):
try:
if not d.startswith("Business Category: "):
synthetic_data.append(d)
except:
continue
elif dataset == "openreview" or dataset == "pubmed":
for index, d in enumerate(syn_data['train']['text']):
len_d = num_tokens_from_string(d, encoding)
if len_d > min_token_threshold:
synthetic_data.append(d)
else:
synthetic_data = [d for d in syn_data['train']['text']]
print("--- syn data len %d ---" % (len(synthetic_data)))
start_time = time.time()
with torch.no_grad():
synthetic_embeddings = []
for i in tqdm(range(len(synthetic_data) // batch_size+1)):
embeddings = model.encode(
synthetic_data[i * batch_size:(i + 1) * batch_size])
synthetic_embeddings.append(embeddings)
all_synthetic_embeddings = np.concatenate(synthetic_embeddings)
print("--- %s seconds for computing emb ---" % (time.time() - start_time))
fid = calculate_fid(all_original_embeddings, all_synthetic_embeddings)
print('FID : %.3f' % fid, len(all_original_embeddings),
len(all_synthetic_embeddings))
all_run_results = []
for run in range(num_run):
if (private_data_size != -1) and (len(all_original_embeddings) > private_data_size):
rand_index = np.random.choice(
list(range(len(all_original_embeddings))), size=private_data_size, replace=False)
original_embeddings = all_original_embeddings[rand_index]
else:
original_embeddings = all_original_embeddings
print("pri emb len", len(original_embeddings))
if (private_data_size != -1) and (len(all_synthetic_embeddings) > private_data_size):
rand_index = np.random.choice(list(
range(len(all_synthetic_embeddings))), size=private_data_size, replace=False)
synthetic_embeddings = all_synthetic_embeddings[rand_index]
else:
synthetic_embeddings = all_synthetic_embeddings
print("syn emb len", len(synthetic_embeddings))
start_time = time.time()
precision, recall, f1, mauve, kl, tv, wass, sinkhorn_loss = calculate_all_metrics(
synthetic_embeddings, original_embeddings, k)
print("--- %s seconds for computing metric ---" %
(time.time() - start_time))
with open(csv_fname, 'a', newline='') as file:
writer = csv.writer(file)
if run == 0:
writer.writerow(["run", "fid", "precision", "recall",
"f1", "mauve", "kl", "tv", "wass", "sinkhorn_loss"])
row_list = [
round(fid, 4),
round(precision, 4),
round(recall, 4),
round(f1, 4),
round(mauve, 4),
round(kl, 4),
round(tv, 4),
round(wass, 4),
round(sinkhorn_loss, 4),
]
writer.writerow([run]+row_list)
all_run_results.append(row_list)
mean_run_results = np.mean(np.array(all_run_results), axis=0).tolist()
mean_run_results = [round(x, 4) for x in mean_run_results]
with open(csv_fname, 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow(["avg"] + mean_run_results)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--original_file", type=str,
default="", required=False)
parser.add_argument(
'--train_data_embeddings_file',
type=str,
default="")
parser.add_argument("--synthetic_file", type=str,
default="",
required=False)
parser.add_argument("--synthetic_folder", type=str,
default="",
required=False)
parser.add_argument("--synthetic_iteration", type=int,
default=20,
required=False)
parser.add_argument("--synthetic_start_iter", type=int,
default=0,
required=False)
parser.add_argument("--min_token_threshold", type=int,
default=100,
required=False)
parser.add_argument("--model_name_or_path", type=str,
default="stsb-roberta-base-v2", required=False)
parser.add_argument("--metric", type=str, default="fid")
parser.add_argument("--batch_size", type=int, required=False, default=1024)
parser.add_argument("--private_data_size", type=int,
required=False, default=5000)
parser.add_argument("--k", type=int, required=False, default=3)
parser.add_argument("--run", type=int, required=False, default=1)
parser.add_argument("--dataset", type=str, default="yelp",
choices=["yelp", "pubmed", "openreview"],
required=False)
args = parser.parse_args()
set_seed(seed=0, n_gpu=1)
model = SentenceTransformer(args.model_name_or_path)
model.eval()
dataset2embedding_file = {
"yelp": f"result/embeddings/{args.model_name_or_path}/yelp_train_all.embeddings.npz",
"pubmed": f"result/embeddings/{args.model_name_or_path}/pubmed_train_all.embeddings.npz",
"openreview": f"result/embeddings/{args.model_name_or_path}/openreview_train_all.embeddings.npz",
}
args.train_data_embeddings_file = dataset2embedding_file[args.dataset]
all_original_embeddings, original_labels = load_embeddings(
args.train_data_embeddings_file)
if args.private_data_size == -1:
args.run = 1
if args.synthetic_folder == '':
if args.synthetic_file != '':
csv_fname = os.path.join(os.path.dirname(
args.synthetic_file), 'eval_metric.csv')
eval_one_file(syn_fname=args.synthetic_file, all_original_embeddings=all_original_embeddings, model=model,
csv_fname=csv_fname, batch_size=args.batch_size,
private_data_size=args.private_data_size,
num_run=args.run, k=args.k, dataset=args.dataset, min_token_threshold=args.min_token_threshold)
else:
for _iter in range(args.synthetic_start_iter, args.synthetic_iteration + 1):
syn_data_file = os.path.join(
args.synthetic_folder, str(_iter), 'samples.csv')
if os.path.isfile(syn_data_file):
csv_fname = os.path.join(
args.synthetic_folder, str(_iter), 'eval_metric.csv')
if os.path.exists(csv_fname):
continue
print(f'Processing {csv_fname}')
eval_one_file(syn_fname=syn_data_file, all_original_embeddings=all_original_embeddings, model=model,
csv_fname=csv_fname, batch_size=args.batch_size,
private_data_size=args.private_data_size,
num_run=args.run, k=args.k, dataset=args.dataset, min_token_threshold=args.min_token_threshold)
else:
print(f"{syn_data_file} does not exist")
if __name__ == "__main__":
main()