forked from bakerjw/CS_Selection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gmpeVH_ga_2011.m
211 lines (186 loc) · 7.11 KB
/
gmpeVH_ga_2011.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
%% Function implementing GMPM by Gulerce and Abrahamson 2011
function [Y_vec, sig_lnY_vec, sig_0_vec, tau_0_vec] = gmpeVH_ga_2011(M, Rrup, Vs30, FRV, FNM, T_vec)
%{
Gulerce and Abrahamson 2011 ground motion prediction model; citation:
Gülerce, Zeynep, and Norman A. Abrahamson. "Site-specific design spectra
for vertical ground motion." Earthquake Spectra 27(4) (2011): 1023-1047.
Provides GM predictions for medians and logarithmic standard deviations of
V/H ratios of PGA, PGV, and 5% damped spectral acceleration
By N. Simon Kwong; [email protected]
Input Variables
M = Magnitude
Rrup = Closest distance to plane of rupture (km)
Vs30 = Average shear wave velocity (m/s) in upper 30m of soil
FRV = Flag for reverse faulting
FNM = Flag for normal faulting
T = Period (sec); from 0.01 to 10 sec (use 0 for PGA and -1 for PGV)
Output Variables
Y = Median V/H ratio of PGA, PGV, or 5% damped SA
sig_lnY = Total standard deviation of log of V/H ratio
sig_0 = Intra-event (within-event) standard deviation of log of V/H ratio
tau_0 = Inter-event (between-event) standard deviation of log of V/H ratio
%}
%% Specify periods used in GMPM development
T_GA2011 = [0.01 0.02 0.029 0.04 0.05 0.075 0.1 0.15 0.2 0.26 0.3 0.4 0.5 0.75 1 1.5 2 3 4 5 7.5 10];
%% Execute GMPE for desired T
Y_vec = zeros(size(T_vec));
sig_lnY_vec = zeros(size(T_vec));
sig_0_vec = zeros(size(T_vec));
tau_0_vec = zeros(size(T_vec));
for ii = 1:length(T_vec)
T = T_vec(ii);
% Check input period
if ismember(T,[0 -1])
% Return output for PGA (g), PGV (cm/sec)
[Y, sig_lnY, sig_0, tau_0] = GA_2011_fixedT(M,Rrup,Vs30,FRV,FNM,T);
elseif T>=min(T_GA2011) && T<=max(T_GA2011)
% Determine neighboring periods
T_lo = T_GA2011(find(T_GA2011<=T,1,'last'));
T_up = T_GA2011(find(T_GA2011>=T,1,'first'));
if T_lo==T_up
% Input T is an element of T_GA2011
[Y, sig_lnY, sig_0, tau_0] = GA_2011_fixedT(M,Rrup,Vs30,FRV,FNM,T);
else
% Determine output for neighboring periods
[Y_lo, sig_lnY_lo, sig_0_lo, tau_0_lo] = GA_2011_fixedT(M,Rrup,Vs30,FRV,FNM,T_lo);
[Y_up, sig_lnY_up, sig_0_up, tau_0_up] = GA_2011_fixedT(M,Rrup,Vs30,FRV,FNM,T_up);
% Linearly interpolate on log scale
Y = exp(interp1(log([T_lo T_up]),log([Y_lo Y_up]),log(T)));
sig_lnY = interp1(log([T_lo T_up]),[sig_lnY_lo sig_lnY_up],log(T));
sig_0 = interp1(log([T_lo T_up]),[sig_0_lo sig_0_up],log(T));
tau_0 = interp1(log([T_lo T_up]),[tau_0_lo tau_0_up],log(T));
end
else
disp(['Input period is ' num2str(T,4)]);
error('Invalid input period T');
end
Y_vec(ii) = Y;
sig_lnY_vec(ii) = sig_lnY;
sig_0_vec(ii) = sig_0;
tau_0_vec(ii) = tau_0;
end
end
function [Y, sig_lnY, sig_0, tau_0] = GA_2011_fixedT(M,Rrup,Vs30,FRV,FNM,T_fixed)
%% Infer other seismological parameters for AS2008 GMPM
% Assume vertical strike-slip faulting mechanism
Rjb = Rrup;
Rx = Rrup;
dip = 90;
Ztor = 0;
Z10 = 0;
W = 15;
FAS = 0;
FHW = 0;
%% Estimate median PGA for rock
Vs30_rock = 1100;
FVS30_rock = 0;
T_rock = 0;
PGAhat1100 = gmpe_as_2008_mod_wCD(M, Vs30_rock, T_rock, Rrup, Rjb, Rx, dip, Ztor, Z10, W, FRV, FNM, FAS, FHW, FVS30_rock);
% PGAhat1100 = 0.1; % Used only for reproducing Figs 9-10 in EQS paper
%% Load previously saved regression output
% Fixed inputs
c1 = 6.75;
c4 = 10;
a3 = 0.0147;
a4 = 0.0334;
a5 = -0.034;
n = 1.18;
c = 1.88;
% Period-dependent inputs
regCoef = [0 865.1 -1.186 0.140 -0.160 -0.105 0.000 0.003 -1.230 0.422 0.333 0.213 0.161
-1 400 -1.955 -1.200 0.090 0.050 0.150 0.022 -1.847 0.373 0.369 0.234 0.170
0.010 865.1 -1.186 0.140 -0.160 -0.105 0.000 0.003 -1.230 0.450 0.330 0.230 0.150
0.020 865.1 -1.219 0.140 -0.160 -0.105 0.000 0.003 -1.268 0.450 0.330 0.230 0.150
0.029 898.6 -1.269 0.335 -0.185 -0.140 0.000 0.003 -1.366 0.450 0.330 0.230 0.150
0.040 994.5 -1.308 0.562 -0.238 -0.160 0.000 0.003 -1.457 0.450 0.341 0.230 0.150
0.050 1053.5 -1.346 0.720 -0.275 -0.136 0.000 -0.001 -1.533 0.450 0.351 0.230 0.150
0.075 1085.7 -1.471 0.552 -0.240 -0.019 0.000 -0.007 -1.706 0.450 0.370 0.230 0.150
0.10 1032.5 -1.624 0.214 -0.169 0.000 0.017 -0.010 -1.831 0.450 0.384 0.230 0.150
0.15 877.6 -1.931 -0.262 -0.069 0.000 0.040 -0.008 -2.114 0.450 0.403 0.230 0.150
0.20 748.2 -2.188 -0.600 0.002 0.000 0.057 -0.003 -2.362 0.450 0.416 0.230 0.150
0.26 639 -2.412 -0.769 0.023 0.000 0.072 0.001 -2.527 0.450 0.429 0.230 0.150
0.30 587.1 -2.518 -0.861 0.034 0.000 0.080 0.006 -2.598 0.450 0.436 0.230 0.150
0.40 503 -2.657 -1.045 0.057 0.000 0.097 0.015 -2.685 0.450 0.449 0.230 0.150
0.50 456.6 -2.669 -1.189 0.075 0.000 0.110 0.022 -2.657 0.450 0.460 0.230 0.150
0.75 410.5 -2.401 -1.250 0.090 0.000 0.133 0.022 -2.265 0.450 0.479 0.237 0.150
1.0 400 -1.955 -1.209 0.090 0.000 0.150 0.022 -1.685 0.450 0.492 0.266 0.150
1.5 400 -1.025 -1.152 0.090 0.029 0.150 0.022 -0.570 0.450 0.511 0.307 0.150
2.0 400 -0.299 -1.111 0.090 0.050 0.150 0.022 0.250 0.532 0.520 0.337 0.150
3.0 400 0.000 -1.054 0.090 0.079 0.150 0.022 0.460 0.648 0.520 0.378 0.213
4.0 400 0.000 -1.014 0.090 0.100 0.150 0.022 0.460 0.700 0.520 0.407 0.258
5.0 400 0.000 -1.000 0.090 0.100 0.150 0.022 0.460 0.700 0.520 0.430 0.292
7.5 400 0.000 -1.000 0.090 0.100 0.150 0.022 0.460 0.700 0.520 0.471 0.355
10.0 400 0.000 -1.000 0.090 0.100 0.150 0.022 0.460 0.700 0.520 0.500 0.400];
periodList = regCoef(:,1);
% % T_GA2011 = periodList(3:end,1);
V_LIN = regCoef(:,2);
b = regCoef(:,3);
a1 = regCoef(:,4);
a2 = regCoef(:,5);
a6 = regCoef(:,6);
a7 = regCoef(:,7);
a8 = regCoef(:,8);
a10 = regCoef(:,9);
s1 = regCoef(:,10);
s2 = regCoef(:,11);
s3 = regCoef(:,12);
s4 = regCoef(:,13);
%% Extract coefficients for given vibration period
ip = find(periodList == T_fixed);
%% Magnitude term
R = sqrt(Rrup^2 + c4^2);
if M<=c1
f1 = a1(ip) + a4*(M-c1) + a8(ip)*(8.5-M)^2 + (a2(ip)+a3*(M-c1)) * log(R);
else
f1 = a1(ip) + a5*(M-c1) + a8(ip)*(8.5-M)^2 + (a2(ip)+a3*(M-c1)) * log(R);
end
%% Site amplification term
% Define V1
if T_fixed==-1 % If PGV
V1 = 862;
elseif T_fixed<=0.5
V1 = 1500;
elseif 0.5<T_fixed && T_fixed<=1
V1 = exp( 8-0.795*log(T_fixed/0.21) );
elseif 1<T_fixed && T_fixed<2
V1 = exp( 6.76-0.297*log(T_fixed) );
elseif T_fixed>=2
V1 = 700;
else
error('Invalid input period T entered');
end
% Define Vs30star
if Vs30<V1
Vs30star = Vs30;
else
Vs30star = V1;
end
% Determine f5 term
if Vs30star<V_LIN(ip)
f5 = a10(ip)*log(Vs30star/V_LIN(ip)) - ( -b(ip)*log(PGAhat1100+c) + b(ip)*log( PGAhat1100+c*(Vs30star/V_LIN(ip))^n ) );
else
f5 = a10(ip)*log(Vs30star/V_LIN(ip)) - ( (b(ip)*n)*log(Vs30star/V_LIN(ip)) );
end
%% Median prediction
lnYhat = f1 + a6(ip)*FRV + a7(ip)*FNM + f5;
Y = exp(lnYhat);
%% Aleatory variability
% Intra-event variability
if M<5
sig_0 = s1(ip);
elseif M>7
sig_0 = s2(ip);
else
sig_0 = s1(ip) + (s2(ip)-s1(ip))/2*(M-5);
end
% Inter-event variability
if M<5
tau_0 = s3(ip);
elseif M>7
tau_0 = s4(ip);
else
tau_0 = s3(ip) + (s4(ip)-s3(ip))/2*(M-5);
end
% Total variability
sig_lnY = sqrt( sig_0^2 + tau_0^2 );
end