forked from bakerjw/CS_Selection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gmpe_as_2008_mod_wCD.m
418 lines (370 loc) · 17 KB
/
gmpe_as_2008_mod_wCD.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
% coded by Yoshifumi Yamamoto, 5/6/10
% Stanford University
% based on AS1997 by Jack W. Baker, 5/5/05
% Stanford University
%
% updated 2011/01/19
% Hanging Wall term
% from the Errata for “AS NGA” model (http://peer.berkeley.edu/products/abrahamson-silva_nga_report_files/AS08_NGA_errata.pdf)
% This version includes constant displacement effect
% updated 2010/05/20
% updated 2009/05/05
%
% Summary of the Abrahamson & Silva Ground-Motion Relations
% Norman Abrahamson, and Walter Silva
% Earthquake Spectra, Volume 24, No.1, pages 67-97, February 2008
%
% This script has been modified to correct an error based on the openSHA
% about constant displacement model(equation 22) and standard
% deviation(equation 24 and 26).
function [Sa, tsigma, period1, pga_rock, sigma, tau] = gmpe_as_2008_mod_wCD(M, Vs30, T, Rrup, Rjb, Rx, dip, Ztor, Z10, W, FRV, FNM, FAS, FHW, FVS30)
% Initialize struct V = constants
V = struct('period',0,'lin',0,...
'a1',0,'a2',0,'a3',0,'a4',0,'a5',0,'a8',0,'a10',0,'a12',0,'a13',0,'a14',0,'a15',0,'a16',0,'a18',0,...
'b',0,'c',0,'c1',0,'c2',0,'c4',0,'n',0,'s1',0,'s2',0,'s3',0,'s4',0,...
'ro',0,'v1',0,'e2',0,'a22',0,'Vs30s',0);
% Get info for rock conditions
Vrock = get_abrahamson_silva_constants(1,1100,FVS30,V); % Update constants for rock
pga_rock = exp(calc_val(M, Rrup, Rjb, Rx, dip, Ztor, Z10, W, FRV, FNM, FAS, FHW, 0, 1100, Vrock));
Vupdated = get_abrahamson_silva_constants(1,Vs30,FVS30,V);
[~, ~, ~, pga_sigmaB, pga_tauB] = abrahamson_silva_sigma(M, pga_rock, Vs30,0, 0, Vupdated);
% Get data for Td
Td = 10^( -1.25 + 0.3*M );
[SaTd] = AS_2008_nga_sub(M, 1100, Td, Rrup, Rjb, Rx, dip, Ztor, 0, W, FRV, FNM, FAS, FHW, FVS30, 0, 0, 1, V, pga_rock, pga_sigmaB, pga_tauB);
% Actual GMPM
[Sa, tsigma, period1, pga_rock, sigma, tau] = AS_2008_nga_sub(M, Vs30, T, Rrup, Rjb, Rx, dip, Ztor, Z10, W, FRV, FNM, FAS, FHW, FVS30, Td, SaTd, 0, V, pga_rock, pga_sigmaB, pga_tauB);
function [Sa, tsigma, period1, pga_rock, sigma, tau] = AS_2008_nga_sub(M, Vs30, T, Rrup, Rjb, Rx, dip, Ztor, Z10, W, FRV, FNM, FAS, FHW, FVS30, Td, SaTd, irock, V, pga_rock, pga_sigmaB, pga_tauB)
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% INPUT
%
% M = moment magnitude
% T = period of vibration
% Use 1000 for output the array of Sa with period
% Rrup = closest distance to fault rupture (rupture distance)(km)
% Rjb = Joyner-Boore distance(km)
% Rx = Horizontal distance (km) from top edge of rupture
% dip = dip angle of fault in degree
% Ztor = Depth-to-top of rupture (km)
% Z10 = Depth to Vs=1.0km/s at the site(m)
% W = Down-dip rupture width (km)
% FRV = Flag for reverse faulting earthquakes
% = 1 for reverse and reverse/oblique earthquakes defined
% by rake angles between 30 and 150 degrees
% = 0 otherwise
%
% FNM = Flag for normal faulting earthquakes
% = 1 for normal earthquakes defined by rake angles
% between -60 and -120 degrees
% = 0 otherwise
%
% FAS = Flag for aftershocks
% = 1 for aftershocks
% = 0 for mainshocks, foreshocks, and swarms
%
% FHW = 1 for Hanging Wall sites
% = 0 otherwise
%
% FVS30 = 1 for estimated Vs30
% = 0 for measured Vs30
%
% ircok = 1 rock
% = 0 not rock
%
% OUTPUT
%
% Sa = median spectral acceleration prediction
% tsigma = logarithmic standard deviation of spectral acceleration
% prediction FOR AN ARBITRARY OR AVERAGE COMPONENT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% for the given period T, get the index for the constants
period = [ 0, -1, 0.01, 0.02, 0.03, 0.04, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 7.5, 10];
nT=length(T); % Length of input vector of vibration periods T
iflg=0;
if (nT==1 && T==1000); % If input period is scalar and if input period is 1000 sec
iflg=1;
nperi=length(period);
Sa=zeros(1,nperi-2);
tsigma=zeros(1,nperi-2);
period1=period(3:end);
for index=3:1:nperi;
% get constants for the given index value
V = get_abrahamson_silva_constants(index,Vs30,FVS30,V);
if period(index)<=Td || SaTd==0;
Sa(index-2) = exp(calc_val(M, Rrup, Rjb, Rx, dip, Ztor, Z10, W, FRV, FNM, FAS, FHW, pga_rock, Vs30, V) + (1-irock)* f_10(Z10, Vs30, V));
else
Sa(index-2) = exp(calc_val2(SaTd,Td, period(index), Z10, pga_rock, Vs30, V));
end;
[tsigma(index-2), sigma, tau, sigmaB, tauB] = abrahamson_silva_sigma(M, pga_rock, Vs30, pga_sigmaB, pga_tauB, V);
end;
end;
if(iflg==0);
Sa=zeros(1,nT);
tsigma=zeros(1,nT);
sigma = zeros(1,nT);
tau = zeros(1,nT);
period1=T;
for it=1:1:nT;
Teach=T(it); % Current value of period within input period vector
if Teach>period(end); Teach = period(end); end;
% interpolate between periods if neccesary
if all(Teach ~= period) % If current period not one of those considered in GMPM; use logical indexing
T_low = max(period(period<Teach)); % Avoid using find()
T_hi = min(period(period>Teach));
% Reduce calls to AS_2008_nga_sub
T_sub = [T_low T_hi];
[sa_sub, tsigma_sub, ~, ~, sigma_sub, tau_sub] = AS_2008_nga_sub(M, Vs30, T_sub, Rrup, Rjb, Rx, dip, Ztor, Z10, W, FRV, FNM, FAS, FHW, FVS30, Td, SaTd, irock, V, pga_rock, pga_sigmaB, pga_tauB);
sa_low = sa_sub(1,1); sa_hi = sa_sub(1,2);
tsigma_low = tsigma_sub(1,1); tsigma_hi = tsigma_sub(1,2);
sigma_low = sigma_sub(1,1); sigma_hi = sigma_sub(1,2);
tau_low = tau_sub(1,1); tau_hi = tau_sub(1,2);
x = [log(T_low) log(T_hi)];
Y_sa = [log(sa_low) log(sa_hi)];
Y_tsigma = [tsigma_low tsigma_hi];
Y_sigma = [sigma_low sigma_hi];
Y_tau = [tau_low tau_hi];
Sa(it) = exp(interp1(x,Y_sa,log(Teach)));
tsigma(it) = interp1(x,Y_tsigma,log(Teach));
sigma(it) = interp1(x,Y_sigma,log(Teach));
tau(it) = interp1(x,Y_tau,log(Teach));
else
index = find(abs((period - Teach)) < 0.0001); % Identify the period
% get constants for the given index value
V = get_abrahamson_silva_constants(index,Vs30,FVS30,V);
if period(index)<=Td || SaTd==0;
Sa(it) = exp(calc_val(M, Rrup, Rjb, Rx, dip, Ztor, Z10, W, FRV, FNM, FAS, FHW, pga_rock, Vs30, V) + (1-irock)* f_10(Z10, Vs30, V));
else
Sa(it) = exp(calc_val2(SaTd,Td, period(index), Z10, pga_rock, Vs30, V));
end;
[tsigma(it), sigma(it), tau(it), sigmaB, tauB] = abrahamson_silva_sigma(M, pga_rock, Vs30, pga_sigmaB, pga_tauB, V);
end;
end;
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% local functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [f1] = f_1(M, R, V)
% value of f1
if (M <= V.c1)
f1 = V.a1 + V.a4 * (M - V.c1) + V.a8 * (8.5 - M)^2 + (V.a2 + V.a3 * (M - V.c1)) * log(R);
else
f1 = V.a1 + V.a5 * (M - V.c1) + V.a8 * (8.5 - M)^2 + (V.a2 + V.a3 * (M - V.c1)) * log(R);
end
function [f4] = f_4(Rjb, Rx, dip, Ztor, M, W, V)
% value of f_4
if Rjb<30
T1=1-Rjb/30;
else
T1=0;
end;
W1=W*cos(dip);
if Rx<=W1;
T2=0.5+Rx/(2*W1);
elseif Rx>W1 || dip==90;
T2=1;
end;
if Rx>=Ztor;
T3=1;
else
T3=Rx/Ztor;
end;
if M<=6;
T4=0;
elseif M<7;
T4=M-6;
else
T4=1;
end;
% from paper AS08
% if dip>=70;
% T5=1-(dip-70)/20;
% else
% T5=1;
% end;
% from the Errata for “AS NGA” model (http://peer.berkeley.edu/products/abrahamson-silva_nga_report_files/AS08_NGA_errata.pdf)
if dip>=30;
T5=1-(dip-30)/60;
else
T5=1;
end;
f4 = V.a14*T1*T2*T3*T4*T5;
function [f5] = f_5(pga_rock, Vs30, V)
% value of f_5
if Vs30 < V.lin;
f5 = V.a10 * log(V.Vs30s/V.lin) - V.b*log(pga_rock+V.c) + V.b*log(pga_rock+V.c*((V.Vs30s/V.lin)^V.n));
else
f5 = (V.a10 + V.b*V.n) * log(V.Vs30s/V.lin);
end;
function [f6] = f_6(Ztor, V)
% value of f_6
if Ztor<10
f6=V.a16*Ztor/10;
else
f6=V.a16;
end;
function [f8] = f_8(Rrup, M, V)
% value of f_8
if M<5.5;
T6=1;
elseif M<=6.5;
T6=0.5*(6.5-M)+0.5;
else
T6=0.5;
end;
if Rrup<100
f8=0;
else
f8=V.a18*(Rrup-100)*T6;
end;
function [f10] = f_10(Z10, Vs30, V)
% value of f_10
if Vs30<180;
Z10h=exp(6.745);
elseif Vs30<=500;
Z10h=exp(6.745-1.35*log(Vs30/180));
else
Z10h=exp(5.394-4.48*log(Vs30/500));
end;
a211=(V.a10+V.b*V.n)*log(V.Vs30s/min(V.v1,1000));
a212=log((Z10+V.c2)/(Z10h+V.c2));
if Vs30>=1000;
a21=0;
elseif a211+V.e2*a212<0;
a21=-a211/a212;
else
a21=V.e2;
end;
f10=a21*a212;
if Z10>=200
f10=f10+V.a22*log(Z10/200);
end;
function [X] = calc_val(M, Rrup, Rjb, Rx, dip, Ztor, Z10, W, FRV, FNM, FAS, FHW, pga_rock, Vs30, constants)
% calculate predicted value
R = sqrt(Rrup^2 + constants.c4^2);
X = f_1(M, R, constants) + constants.a12*FRV + constants.a13*FNM + constants.a15*FAS ...
+ f_5(pga_rock, Vs30, constants) + FHW*f_4(Rjb, Rx, dip, Ztor, M, W, constants) + f_6(Ztor, constants) ...
+ f_8(Rrup, M, constants);
% + f_8(Rrup, M, constants) + f_10(Z10, Vs30, constants);
function [X] = calc_val2(SaTd, Td, T, Z10, pga_rock, Vs30, constants)
% calculate predicted value
X = log((SaTd) * Td^2 / T^2) - f_5(pga_rock, 1100, constants) + f_5(pga_rock, Vs30, constants) + f_10(Z10, Vs30, constants);
function [constants] = get_abrahamson_silva_constants(index,Vs30,FVS30,constants)
% get relevant constants
% arrays with values by index
period = [ 0, -1, 0.01, 0.02, 0.03, 0.04, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 7.5, 10];
lin = [ 865.1, 400.0, 865.1, 865.1, 907.8, 994.5, 1053.5, 1085.7, 1032.5, 877.6, 748.2, 654.3, 587.1, 503.0, 456.6, 410.5, 400.0, 400.0, 400.0, 400.0, 400.0, 400.0, 400.0, 400.0];
b = [ -1.186, -1.955, -1.186, -1.219, -1.273, -1.308, -1.346, -1.471, -1.624, -1.931, -2.188, -2.381, -2.518, -2.657, -2.669, -2.401, -1.955, -1.025, -0.299, 0.0, 0.0, 0.0, 0.0, 0.0];
a1 = [ 0.804, 5.7578, 0.811, 0.855, 0.962, 1.037, 1.133, 1.375, 1.563, 1.716, 1.687, 1.646, 1.601, 1.511, 1.397, 1.137, 0.915, 0.510, 0.192, -0.280, -0.639, -0.936, -1.527, -1.993];
a2 = [-0.9679, -0.9046, -0.9679, -0.9774, -1.0024, -1.0289, -1.0508, -1.0810, -1.0833, -1.0357, -0.9700, -0.9202, -0.8974, -0.8677, -0.8475, -0.8206, -0.8088, -0.7995, -0.7960, -0.7960, -0.7960, -0.7960, -0.7960, -0.7960];
a8 = [-0.0372, -0.12, -0.0372, -0.0372, -0.0372, -0.0315, -0.0271, -0.0191, -0.0166, -0.0254, -0.0396, -0.0539, -0.0656, -0.0807, -0.0924, -0.1137, -0.1289, -0.1534, -0.1708, -0.1954, -0.2128, -0.2263, -0.2509, -0.2683];
a10 = [ 0.9445, 1.5390, 0.9445, 0.9834, 1.0471, 1.0884, 1.1333, 1.2808, 1.4613, 1.8071, 2.0773, 2.2794, 2.4201, 2.5510, 2.5395, 2.1493, 1.5705, 0.3991, -0.6072, -0.9600, -0.9600, -0.9208, -0.7700, -0.6630];
a12 = [ 0.0000, 0.0800, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0181, 0.0309, 0.0409, 0.0491, 0.0619, 0.0719, 0.0800, 0.0800, 0.0800, 0.0800, 0.0800, 0.0800, 0.0800, 0.0800, 0.0800];
a13 = [-0.0600, -0.0600, -0.0600, -0.0600, -0.0600, -0.0600, -0.0600, -0.0600, -0.0600, -0.0600, -0.0600, -0.0600, -0.0600, -0.0600, -0.0600, -0.0600, -0.0600, -0.0600, -0.0600, -0.0600, -0.0600, -0.0600, -0.0600, -0.0600];
a14 = [ 1.0800, 0.7000, 1.0800, 1.0800, 1.1331, 1.1708, 1.2000, 1.2000, 1.2000, 1.1683, 1.1274, 1.0956, 1.0697, 1.0288, 0.9971, 0.9395, 0.8985, 0.8409, 0.8000, 0.4793, 0.2518, 0.0754, 0.0000, 0.0000];
a15 = [-0.3500, -0.3900, -0.3500, -0.3500, -0.3500, -0.3500, -0.3500, -0.3500, -0.3500, -0.3500, -0.3500, -0.3500, -0.3500, -0.3500, -0.3191, -0.2629, -0.2230, -0.1668, -0.1270, -0.0708, -0.0309, 0.0000, 0.0000, 0.0000];
a16 = [ 0.9000, 0.6300, 0.9000, 0.9000, 0.9000, 0.9000, 0.9000, 0.9000, 0.9000, 0.9000, 0.9000, 0.9000, 0.9000, 0.8423, 0.7458, 0.5704, 0.4460, 0.2707, 0.1463, -0.0291, -0.1535, -0.2500, -0.2500, -0.2500];
a18 = [-0.0067, 0.0000, -0.0067, -0.0067, -0.0067, -0.0067, -0.0076, -0.0093, -0.0093, -0.0093, -0.0083, -0.0069, -0.0057, -0.0039, -0.0025, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000];
s1e = [ 0.590, 0.590, 0.590, 0.590, 0.605, 0.615, 0.623, 0.630, 0.630, 0.630, 0.630, 0.630, 0.630, 0.630, 0.630, 0.630, 0.630, 0.615, 0.604, 0.589, 0.578, 0.570, 0.611, 0.640];
s2e = [ 0.470, 0.470, 0.470, 0.470, 0.478, 0.483, 0.488, 0.495, 0.501, 0.509, 0.514, 0.518, 0.522, 0.527, 0.532, 0.539, 0.545, 0.552, 0.558, 0.565, 0.570, 0.587, 0.618, 0.640];
s1m = [ 0.576, 0.576, 0.576, 0.576, 0.591, 0.602, 0.610, 0.617, 0.617, 0.616, 0.614, 0.612, 0.611, 0.608, 0.606, 0.602, 0.594, 0.566, 0.544, 0.527, 0.515, 0.510, 0.572, 0.612];
s2m = [ 0.453, 0.453, 0.453, 0.453, 0.461, 0.466, 0.471, 0.479, 0.485, 0.491, 0.495, 0.497, 0.499, 0.501, 0.504, 0.506, 0.503, 0.497, 0.491, 0.500, 0.505, 0.529, 0.579, 0.612];
s3 = [ 0.470, 0.420, 0.420, 0.420, 0.462, 0.492, 0.515, 0.550, 0.550, 0.550, 0.520, 0.497, 0.479, 0.449, 0.426, 0.385, 0.350, 0.350, 0.350, 0.350, 0.350, 0.350, 0.350, 0.350];
s4 = [ 0.300, 0.300, 0.300, 0.300, 0.305, 0.309, 0.312, 0.317, 0.321, 0.326, 0.329, 0.332, 0.335, 0.338, 0.341, 0.346, 0.350, 0.350, 0.350, 0.350, 0.350, 0.350, 0.350, 0.350];
ro = [ 1.000, 0.740, 1.000, 1.000, 0.991, 0.982, 0.973, 0.952, 0.929, 0.896, 0.874, 0.856, 0.841, 0.818, 0.783, 0.680, 0.607, 0.504, 0.431, 0.328, 0.255, 0.200, 0.200, 0.200];
c1=6.75;
c4=4.5;
a3=0.265;
a4=-0.231;
a5=-0.398;
n=1.18;
c=1.88;
c2=50;
constants.period = period(index);
constants.lin = lin(index);
constants.a1 = a1(index);
constants.a2 = a2(index);
constants.a3 = a3;
constants.a4 = a4;
constants.a5 = a5;
constants.a8 = a8(index);
constants.a10 = a10(index);
constants.a12 = a12(index);
constants.a13 = a13(index);
constants.a14 = a14(index);
constants.a15 = a15(index);
constants.a16 = a16(index);
constants.a18 = a18(index);
constants.b = b(index);
constants.c = c;
constants.c1 = c1;
constants.c2 = c2;
constants.c4 = c4;
constants.n = n;
if FVS30==1;
constants.s1 = s1e(index);
constants.s2 = s2e(index);
else
constants.s1 = s1m(index);
constants.s2 = s2m(index);
end;
constants.s3 = s3(index);
constants.s4 = s4(index);
constants.ro = ro(index);
T=period(index);
if index==2;
constants.v1 = 862;
elseif T<=0.5;
constants.v1 = 1500;
elseif T<=1;
constants.v1 = exp(8.0-0.795*log(T/0.21));
elseif T<2;
constants.v1 = exp(6.76-0.297*log(T));
else
constants.v1 = 700;
end;
if T<0.35 || Vs30>1000;
constants.e2=0;
elseif T<=2;
constants.e2=-0.25*log(Vs30/1000)*log(T/0.35);
else
constants.e2=-0.25*log(Vs30/1000)*log(2/0.35);
end;
if T<2;
constants.a22=0;
else
constants.a22=0.0625*(T-2);
end;
constants.Vs30s=min(Vs30,constants.v1);
function [tsigma, sigma, tau, sigmaB, tauB] = abrahamson_silva_sigma(M, pga_rock, Vs30, pga_sigmaB, pga_tauB, V)
% calculate the sigma
% use the published coefficients for the geometric mean
if M<5;
sigma0 = V.s1;
elseif M<=7;
sigma0 = V.s1 + (V.s2-V.s1)/2 * (M-5);
else
sigma0 = V.s2;
end;
sigmaAMP=0.3;
sigmaB=sqrt(sigma0^2-sigmaAMP^2);
if M<5;
tau0 = V.s3;
elseif M<=7;
tau0 = V.s3 + (V.s4-V.s3)/2 * (M-5);
else
tau0 = V.s4;
end;
tauB=tau0;
if Vs30>=V.lin;
term1 = 0;
else
% from openSHA
term1 = V.b * pga_rock * ( (-1/(pga_rock+V.c)) + (1/(pga_rock + V.c*((Vs30/V.lin)^V.n))) );
end;
% from openSHA
sigma = sqrt(sigma0^2 + term1^2 * pga_sigmaB^2 + 2*term1 * sigmaB*pga_sigmaB*V.ro);
tau = sqrt(tau0^2 + term1^2 * pga_tauB^2 + 2*term1 * tauB *pga_tauB *V.ro);
tsigma = sqrt(sigma^2 + tau^2);