-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathClustringRefinement.py
123 lines (93 loc) · 4.32 KB
/
ClustringRefinement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import glob
import os
import cv2
import numpy as np
from sklearn.cluster import KMeans
def normalize(x):
"""
Method that normalizes an input array to range [0, 1].
"""
return (x - np.min(x)) / (np.max(x) - np.min(x))
names = glob.glob("/Path/To/Test/Thumbnails/*.png")
names = [os.path.split(name)[1] for name in names]
# print(names)
# folders = glob.glob('/home/soroush47/fastpathology/projects/VibekesAnnotations/results/*')
for name in names:
print("/Path/To/images/" + name)
FM = cv2.imread("/Path/To/Test/PWC/results/" + name)[..., 1] / 255
Gr = cv2.imread("/Path/To/Test/Gradients/" + name)[..., 1] / 255
Rw1 = cv2.imread("/Path/To/Test/Thumbnails/" + name)[..., 0] / 255
Rw2 = cv2.imread("/Path/To/Test/Thumbnails/" + name)[..., 1] / 255
Rw3 = cv2.imread("/Path/To/Test/Thumbnails/" + name)[..., 2] / 255
SP = cv2.imread("/Path/To/Test/Superpixels/" + name)[..., 1] / 255
scale_percent = 30 # percent of original size
width = int(Rw1.shape[1] * scale_percent / 100)
height = int(Rw1.shape[0] * scale_percent / 100)
dim = (width, height)
# resize image
Rw1 = cv2.resize(Rw1, dim, interpolation=cv2.INTER_AREA)
Rw2 = cv2.resize(Rw2, dim, interpolation=cv2.INTER_AREA)
Rw3 = cv2.resize(Rw3, dim, interpolation=cv2.INTER_AREA)
FM = cv2.resize(FM, dim, interpolation=cv2.INTER_AREA)
Gr = cv2.resize(Gr, dim, interpolation=cv2.INTER_AREA)
SP = cv2.resize(SP, dim, interpolation=cv2.INTER_AREA)
FM = normalize(FM)
FM[FM < 0.7] = 0
Ws = np.array([1, 1, 1, 0.8, 0.2, 0.4])
features_initial = [
FM,
Rw1,
Rw2,
Rw3,
Gr,
SP,
] # Assuming these are your feature arrays
# Apply the weights to each feature using map
weighted_features = list(map(lambda f, w: f * w, features_initial, Ws))
# Stack the weighted features to create a feature vector for each pixel
features_stacked = np.stack(weighted_features, axis=-1)
# Stack all images to create a feature vector for each pixel
features = features_stacked.reshape(-1, 5)
# Apply KMeans clustering with a consistent initialization and random seed
kmeans = KMeans(n_clusters=3, init="k-means++", random_state=42)
labels = kmeans.fit_predict(features)
# Reshape the labels to the image's shape
labels_2D = labels.reshape(FM.shape)
# Find the cluster that overlaps the most with the white regions in FM
overlap_scores = [np.sum((labels_2D == i) & (FM == 1)) for i in range(3)]
main_cluster = np.argmax(overlap_scores)
# Replace the main cluster with 1 and other clusters with 0
pred = np.where(labels_2D == main_cluster, 1, 0)
label = pred.astype(np.uint8)
label = cv2.medianBlur(label, 3)
def fill_holes(binary_img):
# Copy the image
im_in = binary_img.copy()
# Threshold (to ensure binary input)
th, im_th = cv2.threshold(im_in, 0.45, 1, cv2.THRESH_BINARY_INV)
# Copy the thresholded image
im_floodfill = im_th.copy()
# Mask used for flood filling. Notice the size needs to be 2 pixels larger than the image
h, w = im_th.shape[:2]
mask = np.zeros((h + 2, w + 2), np.uint8)
# Flood fill from point (0, 0)
cv2.floodFill(im_floodfill, mask, (0, 0), 255)
# Invert floodfilled image
im_floodfill_inv = cv2.bitwise_not(im_floodfill)
# Combine the two images to get the foreground
filled_image = im_th | im_floodfill_inv
return filled_image
label = fill_holes(label)
smoothed_image = cv2.blur(label, (79, 79))
smoothed_image = cv2.threshold(smoothed_image, 10, 200, cv2.THRESH_BINARY)
Gr = cv2.imread("/Path/To/Test/Gradients/" + name)[..., 1]
Gr = cv2.resize(Gr, dim, interpolation=cv2.INTER_AREA)
Gr = cv2.medianBlur(Gr, 11)
ret, thresh = cv2.threshold(Gr, 10, 51, cv2.THRESH_BINARY)
# print(np.unique(thresh))
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
empt = np.zeros(Rw2.shape)
smoothed_image[1][thresh < 0.5] = 0
smoothed_image[1][smoothed_image[1] > 100] = 255
Final = cv2.medianBlur(smoothed_image[1], 21)
cv2.imwrite("/Path/To/Test/ClusteringResults/" + name, Final)