-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_uap_df.py
227 lines (184 loc) · 8.71 KB
/
train_uap_df.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
'''
Deepfool based UAP Generation in PyTorch
Reference:
[1] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, Pascal Frossard
Universal adversarial perturbations. CVPR, 2017
'''
# Import library
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import sys
import configparam
import time
# Import pretrained victim models
from models import *
# Import DataLoaders
from dataloaders.amigos_cnn_loader import amigos_cnn_loader
from dataloaders.deap_cnn_loader import deap_cnn_loader
from dataloaders.physionet_cnn_loader import physionet_cnn_loader
from dataloaders.ner2015_cnn_loader import ner2015_cnn_loader
# Import ART(Adversarial Robustness Toolbox) library for DeepFool-UAP
from art.estimators.classification import PyTorchClassifier
from art.attacks.evasion import UniversalPerturbation
# K-folds validation
from sklearn.model_selection import KFold
k_folds = 5
def train(param):
# Define Hyper-parmeters
param.PrintConfig()
learning_rate = param.learning_rate
batch_size = param.batch_size
num_epoch = param.num_epoch
res_list_test = np.array([]).reshape((0, 3))
# Load Dataset
if param.dataset == 'amigos':
data_set = amigos_cnn_loader(param)
elif param.dataset == 'deap':
data_set = deap_cnn_loader(param)
elif param.dataset == 'physionet':
data_set = physionet_cnn_loader(param)
elif param.dataset == 'ner2015':
data_set = ner2015_cnn_loader(param)
# Define the K-fold Cross Validator
kfold = KFold(n_splits=k_folds, shuffle=True, random_state=0)
# For results per fold
results = []
for fold, (train_ids, test_ids) in enumerate(kfold.split(data_set)):
# Print fold info
print('-----------------------')
print(f'FOLD {fold}')
print('-----------------------')
# set victim model
if param.model == 'eegnet':
print('Model: EEGNet')
model = EEGNet(param.num_channel, param.num_length, param.num_class)
elif param.model == 'sconvnet':
print('Shallow Conv Net')
model = ShallowConvNet(param.num_channel, param.num_length, param.num_class)
elif param.model == 'dconvnet':
print('Deep Conv Net')
model = DeepConvNet(param.num_channel, param.num_length, param.num_class)
elif param.model == 'resnet':
print('ResNet')
model = ResNet8(param.num_class)
# model = EEGResNet(in_chans=param.num_channel, n_classes=param.num_class, input_window_samples=param.num_length)
elif param.model == 'tidnet':
print('TIDNet')
model = TIDNet(in_chans=param.num_channel, n_classes=param.num_class, input_window_samples=param.num_length)
elif param.model == 'vgg':
print('VGG')
model = vgg_eeg(pretrained=False, num_classes=param.num_class)
# Load pretrained weight for victim model
pretrained_weight_file = param.result_path + '/pretrained/' + f'fold{fold}_' + param.pretrained_name
print(pretrained_weight_file)
model.load_state_dict(torch.load(pretrained_weight_file))
model.eval()
model.cuda()
x_train = []
y_train = []
x_test = []
y_test = []
train_subsampler = torch.utils.data.SubsetRandomSampler(train_ids)
test_subsampler = torch.utils.data.SubsetRandomSampler(test_ids)
# Define data loaders for training and testing data in this fold
train_loader = torch.utils.data.DataLoader(data_set, batch_size=batch_size, sampler=train_subsampler, num_workers=12)
test_loader = torch.utils.data.DataLoader(data_set, batch_size=batch_size, sampler=test_subsampler, num_workers=12)
for data, labels in train_loader:
for eeg in data.numpy():
x_train.append(eeg)
for label in labels.numpy():
y_train.append(label)
x_train = np.array(x_train)
y_train = np.array(y_train)
# print('x_train shape:', x_train.shape)
# print('y_train shape:', y_train.shape)
for data, labels in test_loader:
for eeg in data.numpy():
x_test.append(eeg)
for label in labels.numpy():
y_test.append(label)
x_test = np.array(x_test)
y_test = np.array(y_test)
# print('x_test shape:', x_test.shape)
# print('y_test shape:', y_test.shape)
# Define Criterion and Optimizer
loss_func = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-3)
# Create the ART classifier
classifier = PyTorchClassifier(
model=model,
clip_values=(0, 1),
loss=loss_func,
optimizer=optimizer,
input_shape=(1, param.num_channel, param.num_length),
nb_classes=param.num_class
)
# Generate adversarial train examples & perturbation
start_time = time.time()
attack = UniversalPerturbation(classifier=classifier, eps=param.epsilon, max_iter=num_epoch, delta=0.2,
batch_size=param.batch_size, norm='inf')
adv_x_train = attack.generate(x_train)
adv_perturbation = attack.noise
end_time = time.time()
print('Generated perturbation in %.4f seconds!'%(end_time-start_time))
# Clean accuracy
predictions = classifier.predict(x_test)
clean_acc = np.sum(np.argmax(predictions, axis=1) == y_test) / len(y_test)
# Adversarial accuracy
# adv_perturbation = np.load(param.uap_path + 'df_uap_fold%d.npy'%fold) # Load saved perturbation
adv_predictions = classifier.predict(x_test + adv_perturbation)
perturbated_acc = np.sum(np.argmax(adv_predictions, axis=1) == y_test) / len(y_test)
# Fooling ratio
fooling_ratio = np.sum(np.argmax(predictions, axis=1) != np.argmax(adv_predictions, axis=1)) / len(y_test)
print('Clean Accuracy: %.4f'%clean_acc)
print('Adversarial Accuracy: %.4f'%perturbated_acc)
print('Fooling ration: %.4f'%fooling_ratio)
results.append([clean_acc, perturbated_acc, fooling_ratio])
print('Adversarial test result on fold {}: {:.4f} -> {:.4f}, test fooling ratio {:.4f}'.format(fold,
clean_acc,
perturbated_acc,
fooling_ratio))
# Save Universal perturbation per fold
np.save(param.uap_path + 'df_uap_fold%d.npy'%fold, attack.noise)
# Print fold results
print(f'Finished K-FOLD CROSS VALIDATION RESULTS FOR {k_folds} FOLDS')
print('--------------------------------')
sum_clean = 0.0
sum_adv = 0.0
sum_fool = 0.0
for i in range(len(results)):
print('Fold : {}, test_acc : {:.4f} -> {:.4f}, test fooling ratio {:.4f}'.format(i, results[i][0],
results[i][1],
results[i][2]))
sum_clean += results[i][0]
sum_adv += results[i][1]
sum_fool += results[i][2]
print('Average: {:.4f} -> {:.4f}, fooling ratio {:.4f}'.format(sum_clean / len(results), sum_adv / len(results),
sum_fool / len(results)))
# Save result
result_list = np.array(results)
result_list = np.append(result_list,
np.array([[sum_clean / len(results), sum_adv / len(results), sum_fool / len(results)]]),
axis=0)
if param.attack_type == 'targeted':
np.savetxt(param.uap_path + '_df_result_target%d_fold.txt' % param.attack_target, result_list, fmt='%1.4f')
print('saved at' + param.uap_path + '_df_result_non_target_fold%d_fold.txt' % param.attack_target)
elif param.attack_type == 'non-targeted':
np.savetxt(param.uap_path + '_df_result_non_target_fold.txt', result_list, fmt='%1.4f')
print('saved at' + param.uap_path + '_df_result_non_target_fold.txt')
if __name__ == '__main__':
no_gpu = 0
if len(sys.argv) > 1:
conf_file_name = sys.argv[1]
if len(sys.argv) > 2:
no_gpu = int(sys.argv[2])
else:
conf_file_name = './config/non-target/eval_deap_tidnet.cfg'
conf = configparam.ConfigParam()
conf.LoadConfiguration(conf_file_name)
torch.cuda.set_device(no_gpu)
print('GPU allocation ID: %d'%no_gpu)
train(conf)