-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
158 lines (132 loc) · 5.63 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import numpy as np
import torch
import torch.nn as nn
import time
from torch.distributions import Categorical
from utils import *
from models.resnet_vi import resnet20_vi, resnet56_vi
from models.vgg_vi import VGG_vi
from models.vgg import VGG
from models.resnet import resnet20, resnet56
class NetWrapper():
def __init__(self):
cprint('c', '\nNet:')
self.model = None
def fit(self, train_loader, optimizer):
raise NotImplementedError
def predict(self, test_loader):
raise NotImplementedError
def validate(self, val_loader):
raise NotImplementedError
def save(self, filename='checkpoint.pt'):
state = {
'state_dict': self.model.state_dict(),
}
torch.save(state, filename)
def load(self, filename):
state = torch.load(filename)
self.model.load_state_dict(state['state_dict'])
class ResNetWrapper(NetWrapper):
def __init__(self, N, half=False, cuda=True, double=False, vi=True, num_classes=10, net='resnet20'):
super(ResNetWrapper).__init__()
self.N = N
self.vi = vi
self.num_classes = num_classes
if vi:
if net == 'resnet20':
self.model = resnet20_vi(N=N, num_classes=num_classes)
elif net == 'resnet56':
self.model = resnet56_vi(N=N, num_classes=num_classes)
else:
if net == 'resnet20':
self.model = resnet20(num_classes=num_classes)
elif net == 'resnet56':
self.model = resnet56(num_classes=num_classes)
self.half = half
self.double = double
if self.half:
self.model.half()
if self.double:
self.model.double()
if cuda:
self.model.cuda()
def fit(self, train_loader, lr=0.01, weight_decay=0.0, epoch=None, adv=None, optimizer='adam', ratio=0.0,
samplings=1):
if optimizer == 'sgd':
optimizer = torch.optim.SGD(self.model.parameters(), lr, momentum=0.9, weight_decay=weight_decay)
elif optimizer == 'adam':
optimizer = torch.optim.Adam(self.model.parameters(), lr, weight_decay=weight_decay)
else:
raise ValueError("Optimizer {} not valid.".format(optimizer))
print('current lr {:.5e}'.format(optimizer.param_groups[0]['lr']))
loss, prec = train(train_loader, self.model, optimizer, epoch, self.N, half=self.half, double=self.double, vi=self.vi, ratio=ratio, samplings=samplings)
return loss, prec
def validate(self, val_loader, sample=True):
criterion = nn.CrossEntropyLoss().cuda()
if self.half:
criterion.half()
loss, prec = validate(val_loader, self.model, criterion, half=self.half, double=self.double, vi=self.vi, sample=sample)
return loss, prec
def sample_predict(self, x, Nsamples):
self.model.eval()
with torch.no_grad():
predictions = x.data.new(Nsamples, x.shape[0], self.num_classes)
Hs = []
for i in range(Nsamples):
y, kl = self.model(x)
predictions[i] = y
output = nn.functional.softmax(y)
H = torch.distributions.Categorical(probs=output).entropy()
Hs.append(H)
Ha = sum(Hs) / Nsamples
He = sum(torch.abs(Ha - i) for i in Hs) / Nsamples
return predictions, Ha, He
class VGG16VIWrapper(NetWrapper):
def __init__(self, N, half=False, cuda=True, double=False, num_classes=10, vi=True):
super(VGG16VIWrapper).__init__()
self.N = N
self.vi = vi
self.num_classes = num_classes
if not vi:
self.model = VGG(nclass=num_classes)
else:
self.model = VGG_vi(sigma_0=0.15, N=N, init_s=0.15, nclass=num_classes)
self.half = half
self.double = double
if self.half:
self.model.half()
if self.double:
self.model.double()
if cuda:
self.model.cuda()
def fit(self, train_loader, lr=0.01, weight_decay=0.0, epoch=None, adv=None, optimizer='adam', ratio=0.0,
samplings=1, sebr=0.0):
if optimizer == 'sgd':
optimizer = torch.optim.SGD(self.model.parameters(), lr, momentum=0.9, weight_decay=weight_decay)
elif optimizer == 'adam':
optimizer = torch.optim.Adam(self.model.parameters(), lr, weight_decay=weight_decay)
else:
raise ValueError("Optimizer {} not valid.".format(optimizer))
print('current lr {:.5e}'.format(optimizer.param_groups[0]['lr']))
loss, prec = train(train_loader, self.model, optimizer, epoch, self.N, half=self.half, double=self.double, vi=self.vi, ratio=ratio, samplings=samplings)
return loss, prec
def validate(self, val_loader, sample=True):
criterion = nn.CrossEntropyLoss().cuda()
if self.half:
criterion.half()
loss, prec = validate(val_loader, self.model, criterion, half=self.half, double=self.double, vi=self.vi, sample=sample)
return loss, prec
def sample_predict(self, x, Nsamples):
self.model.eval()
with torch.no_grad():
predictions = x.data.new(Nsamples, x.shape[0], self.num_classes)
Hs = []
for i in range(Nsamples):
y, kl = self.model(x)
predictions[i] = y
output = nn.functional.softmax(y)
H = torch.distributions.Categorical(probs=output).entropy()
Hs.append(H)
Ha = sum(Hs) / Nsamples
He = sum(torch.abs(Ha - i) for i in Hs) / Nsamples
return predictions, Ha, He