-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet4.py
65 lines (58 loc) · 2.6 KB
/
resnet4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch.nn.functional as F
from torch import nn
import torch
class Residual(nn.Module):
def __init__(self, inc, outc, c1, c2, c3, c4, use1x1=False, stride=1):
super(Residual, self).__init__()
#inception block
self.p11 = nn.Conv2d(inc, c1, kernel_size=1, stride=stride)
self.p21 = nn.Conv2d(inc, c2[0], kernel_size=1, stride=stride)
self.p22 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
self.p31 = nn.Conv2d(inc, c3[0], kernel_size=1, stride=stride)
self.p32 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
self.dropout = nn.Dropout2d(0.5)
self.p41 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
self.p42 = nn.Conv2d(inc, c4, kernel_size=1, stride=stride)
self.con1x1 = nn.Conv2d(inc, outc, kernel_size=1, stride=stride) if use1x1 else None
self.bn = nn.BatchNorm2d(outc)
def forward(self, X):
p1 = F.relu(self.p11(X))
p2 = F.relu(self.p22(self.dropout(F.relu(self.p21(X)))))
p3 = F.relu(self.p32(self.dropout(F.relu(self.p31(X)))))
p4 = F.relu(self.p42(self.p41(X)))
Y = self.bn(torch.cat((p1, p2, p3, p4), dim=1))
if self.con1x1:
X = self.con1x1(X)
return F.relu(Y + X)
def Resnet_block(inc, outc, c1, c2, c3, c4, num_Residuals, first_block=False):
if first_block:
assert inc == outc
blk = []
for i in range(num_Residuals):
if i == 0 and not first_block:
blk.append(Residual(inc, outc, c1, c2, c3, c4, use1x1=True, stride=2))
else:
blk.append(Residual(outc, outc, c1, c2, c3, c4))
return nn.Sequential(*blk)
class GlobalAvgPool2d(nn.Module):
def __init__(self):
super(GlobalAvgPool2d, self).__init__()
def forward(self, x):
return F.avg_pool2d(x, kernel_size = x.size()[2:])
class FlattenLayer(torch.nn.Module):
def forward(self, x):
return x.view(x.shape[0], -1)
def Resnet_4():
net = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
net.add_module('resnet_1', Resnet_block(32, 32, 8, (4, 8), (4, 8), 8, 2, first_block=True))
net.add_module('resnet_2', Resnet_block(32, 80, 16, (16, 32), (8, 16), 16, 2))
net.add_module('resnet_3', Resnet_block(80, 192, 32, (32, 64), (32, 64), 32, 2))
net.add_module('resnet_4', Resnet_block(192, 320, 64, (64, 128), (32, 64), 64, 2))
net.add_module('global_avg_pool', GlobalAvgPool2d())
net.add_module('fc', nn.Sequential(FlattenLayer(), nn.Linear(320, 10)))
return net