-
Notifications
You must be signed in to change notification settings - Fork 30
/
demo.py
169 lines (153 loc) · 5.93 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
''' Demo SDK for LiveStreaming
Author Dan Yang
Time 2018-10-15
For LiveStreaming Game'''
# import the env from pip
import LiveStreamingEnv.env as env
import LiveStreamingEnv.load_trace as load_trace
import matplotlib.pyplot as plt
import time
import numpy as np
# path setting
TRAIN_TRACES = './network_trace/' #train trace path setting,
video_size_file = './video_trace/AsianCup_China_Uzbekistan/frame_trace_' #video trace path setting,
LogFile_Path = "./log/" #log file trace path setting,
# Debug Mode: if True, You can see the debug info in the logfile
# if False, no log ,but the training speed is high
DEBUG = False
DRAW = True
# load the trace
all_cooked_time, all_cooked_bw, all_file_names = load_trace.load_trace(TRAIN_TRACES)
#random_seed
random_seed = 2
video_count = 0
FPS = 25
frame_time_len = 0.04
#init the environment
#setting one:
# 1,all_cooked_time : timestamp
# 2,all_cooked_bw : throughput
# 3,all_cooked_rtt : rtt
# 4,agent_id : random_seed
# 5,logfile_path : logfile_path
# 6,VIDEO_SIZE_FILE : Video Size File Path
# 7,Debug Setting : Debug
net_env = env.Environment(all_cooked_time=all_cooked_time,
all_cooked_bw=all_cooked_bw,
random_seed=random_seed,
logfile_path=LogFile_Path,
VIDEO_SIZE_FILE=video_size_file,
Debug = DEBUG)
BIT_RATE = [500.0,850.0,1200.0,1850.0] # kpbs
TARGET_BUFFER = [2.0,3.0] # seconds
# ABR setting
RESEVOIR = 0.5
CUSHION = 2
cnt = 0
# defalut setting
last_bit_rate = 0
bit_rate = 0
target_buffer = 0
# QOE setting
reward_frame = 0
reward_all = 0
SMOOTH_PENALTY= 0.02
REBUF_PENALTY = 1.5
LANTENCY_PENALTY = 0.005
# plot info
idx = 0
id_list = []
bit_rate_record = []
buffer_record = []
throughput_record = []
# plot the real time image
if DRAW:
fig = plt.figure()
plt.ion()
plt.xlabel("time")
plt.axis('off')
while True:
reward_frame = 0
# input the train steps
#if cnt > 5000:
#plt.ioff()
# break
#actions bit_rate target_buffer
# every steps to call the environment
# time : physical time
# time_interval : time duration in this step
# send_data_size : download frame data size in this step
# chunk_len : frame time len
# rebuf : rebuf time in this step
# buffer_size : current client buffer_size in this step
# rtt : current buffer in this step
# play_time_len : played time len in this step
# end_delay : end to end latency which means the (upload end timestamp - play end timestamp)
# decision_flag : Only in decision_flag is True ,you can choose the new actions, other time can't Becasuse the Gop is consist by the I frame and P frame. Only in I frame you can skip your frame
# buffer_flag : If the True which means the video is rebuffing , client buffer is rebuffing, no play the video
# cdn_flag : If the True cdn has no frame to get
# end_of_video : If the True ,which means the video is over.
time, time_interval, send_data_size, chunk_len,\
rebuf, buffer_size, play_time_len,end_delay,\
cdn_newest_id, download_id,cdn_has_frame,decision_flag, \
buffer_flag,cdn_flag, end_of_video = net_env.get_video_frame(bit_rate,target_buffer)
cnt += 1
if time_interval != 0:
# plot bit_rate
id_list.append(idx)
idx += time_interval
bit_rate_record.append(BIT_RATE[bit_rate])
# plot buffer
buffer_record.append(buffer_size)
# plot throughput
trace_idx = net_env.get_trace_id()
print(trace_idx, idx,len(all_cooked_bw[trace_idx]))
throughput_record.append(all_cooked_bw[trace_idx][int(idx/0.5)] % 2940 )
if not cdn_flag:
reward_frame = frame_time_len * float(BIT_RATE[bit_rate]) / 1000 - REBUF_PENALTY * rebuf - LANTENCY_PENALTY * end_delay
else:
reward_frame = -(REBUF_PENALTY * rebuf)
if decision_flag or end_of_video:
# reward formate = play_time * BIT_RATE - 4.3 * rebuf - 1.2 * end_delay
reward_frame += -1 * SMOOTH_PENALTY * (abs(BIT_RATE[bit_rate] - BIT_RATE[last_bit_rate]) / 1000)
# last_bit_rate
last_bit_rate = bit_rate
# draw setting
if DRAW:
ax = fig.add_subplot(311)
plt.ylabel("BIT_RATE")
plt.ylim(300,2000)
plt.plot(id_list,bit_rate_record,'-r')
ax = fig.add_subplot(312)
plt.ylabel("Buffer_size")
plt.ylim(0,7)
plt.plot(id_list,buffer_record,'-b')
ax = fig.add_subplot(313)
plt.ylabel("throughput")
plt.ylim(0,2500)
plt.plot(id_list,throughput_record,'-g')
plt.draw()
plt.pause(0.01)
# -------------------------------------------Your Algorithm -------------------------------------------
# which part is the althgrothm part ,the buffer based ,
# if the buffer is enough ,choose the high quality
# if the buffer is danger, choose the low quality
# if there is no rebuf ,choose the low target_buffer
'''if buffer_size < RESEVOIR:
bit_rate = 0
elif buffer_size >= RESEVOIR + CUSHION:
bit_rate = 2
elif buffer_size >= CUSHION + CUSHION:
bit_rate = 3
else:
bit_rate = 2'''
bit_rate = 2
target_buffer = 0
# ------------------------------------------- End -------------------------------------------
reward_all += reward_frame
if end_of_video:
# Narrow the range of results
break
if DRAW:
plt.show()
print(reward_all)