-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathextract_stats.py
342 lines (290 loc) · 12.2 KB
/
extract_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import re
import os
import json
import argparse
from string import punctuation
import torch
import yaml
import numpy as np
from torch.utils.data import DataLoader
from g2p_en import G2p
# from pypinyin import pinyin, Style
from utils.model import get_model, get_vocoder
from utils.tools import get_configs_of, to_device, synth_samples
from dataset import TextDataset, Dataset
from text import text_to_sequence
def read_lexicon(lex_path):
lexicon = {}
with open(lex_path) as f:
for line in f:
temp = re.split(r"\s+", line.strip("\n"))
word = temp[0]
phones = temp[1:]
if word.lower() not in lexicon:
lexicon[word.lower()] = phones
return lexicon
def preprocess_english(text, preprocess_config):
text = text.rstrip(punctuation)
lexicon = read_lexicon(preprocess_config["path"]["lexicon_path"])
g2p = G2p()
phones = []
words = re.split(r"([,;.\-\?\!\s+])", text)
for w in words:
if w.lower() in lexicon:
phones += lexicon[w.lower()]
else:
phones += list(filter(lambda p: p != " ", g2p(w)))
phones = "{" + "}{".join(phones) + "}"
phones = re.sub(r"\{[^\w\s]?\}", "{sp}", phones)
phones = phones.replace("}{", " ")
print("Raw Text Sequence: {}".format(text))
print("Phoneme Sequence: {}".format(phones))
sequence = np.array(
text_to_sequence(
phones, preprocess_config["preprocessing"]["text"]["text_cleaners"]
)
)
return np.array(sequence)
# def preprocess_mandarin(text, preprocess_config):
# lexicon = read_lexicon(preprocess_config["path"]["lexicon_path"])
# phones = []
# pinyins = [
# p[0]
# for p in pinyin(
# text, style=Style.TONE3, strict=False, neutral_tone_with_five=True
# )
# ]
# for p in pinyins:
# if p in lexicon:
# phones += lexicon[p]
# else:
# phones.append("sp")
# phones = "{" + " ".join(phones) + "}"
# print("Raw Text Sequence: {}".format(text))
# print("Phoneme Sequence: {}".format(phones))
# sequence = np.array(
# text_to_sequence(
# phones, preprocess_config["preprocessing"]["text"]["text_cleaners"]
# )
# )
# return np.array(sequence)
def synthesize(device, model, args, configs, vocoder, batchs, control_values):
preprocess_config, model_config, train_config = configs
pitch_control, energy_control, duration_control = control_values
for batch in batchs:
batch = to_device(batch, device)
with torch.no_grad():
# Forward
output = model(
*(batch[2:-2]),
spker_embeds=batch[-2],
accents=batch[-1],
p_control=pitch_control,
e_control=energy_control,
d_control=duration_control
)
synth_samples(
batch,
output,
vocoder,
model_config,
preprocess_config,
train_config["path"]["result_path"],
args,
)
def extract_stats_fc(device, model, args, configs, vocoder, loader, control_values):
preprocess_config, model_config, train_config = configs
pitch_control, energy_control, duration_control = control_values
# spk_lab = ["RRBI", "ABA", "SKA", "EBVS", "TNI", "NCC", "BWC", "HQTV", "TXHC", "ERMS", "CLB", "PNV", "BDL", "LXC", "HKK", "ASI", "THV", "MBMPS", "SLT", "SVBI", "ZHAA", "HJK", "RMS", "TLV", "NJS", "YBAA", "YDCK", "YKWK"]
spk_lab = ["RRBI", "ABA", "SKA", "EBVS", "TNI", "NCC", "BWC", "HQTV", "TXHC", "ERMS", "PNV", "LXC", "HKK", "ASI", "THV", "MBMPS", "SVBI", "ZHAA", "HJK", "TLV", "NJS", "YBAA", "YDCK", "YKWK"]
labels = preprocess_config["accents"]
array_path = train_config["path"]["array_path"]
acc_mu = []
acc_var = []
spk_mu = []
spk_var = []
embedding_accent_id = []
embedding_speaker_id = []
i=0
for batchs in loader:
for batch in batchs:
batch = to_device(batch, device)
with torch.no_grad():
# Forward
# smallbatch=(batch[1],batch[-1],batch[-2]) #mel,acc,spk
smallbatch=(batch[6],batch[-1],batch[2]) #mel,acc,spk REMAKE FOR BIG DATASETLOADER
model.eval()
(z_acc, z_spk, z_acc_sg, mlvae_stats) = model.mlvae_encoder.inference(smallbatch[0], acc_labels=smallbatch[1])
# ids,
# raw_texts,
# speakers,
# texts,
# src_lens,
# max_src_len,
# mels,
# mel_lens,
# max_mel_len,
# pitch_data,
# energies,
# durations,
# attn_priors,
# spker_embeds,
# accents,
for k in range(mlvae_stats[0].size(0)):
acc_mu.append(mlvae_stats[0][k].squeeze(0).cpu().detach())
acc_var.append(mlvae_stats[1][k].squeeze(0).cpu().detach())
spk_mu.append(mlvae_stats[2][k].squeeze(0).cpu().detach())
spk_var.append(mlvae_stats[3][k].squeeze(0).cpu().detach())
embedding_accent_id.append(smallbatch[1][k].cpu().detach())
embedding_speaker_id.append(smallbatch[2][k].cpu().detach())
print(i)
i+=1
embedding_acc = np.array([np.array(xi) for xi in acc_mu])
embedding_acc_var = np.array([np.array(xi) for xi in acc_var])
embedding_accent_id = np.array([np.array(id_) for id_ in embedding_accent_id])
# embedding_accent_id = np.array([np.array(id_[0]) for id_ in embedding_accent_id])
# plot_embedding(out_dir, embedding_acc, embedding_accent_id,colors,labels,filename='embedding_acc.png')
embedding_spk = np.array([np.array(xi) for xi in spk_mu])
embedding_spk_var = np.array([np.array(xi) for xi in spk_var])
embedding_speaker_id = np.array([np.array(id_) for id_ in embedding_speaker_id])
# plot_embedding(out_dir, embedding_spk, embedding_speaker_id,colors2,spk_lab,filename='embedding_spk.png')
np.save(os.path.join(array_path,'inf_acc_mu.npy'),embedding_acc)
np.save(os.path.join(array_path,'inf_acc_var.npy'),embedding_acc_var)
np.save(os.path.join(array_path,'inf_spk_mu.npy'),embedding_spk)
np.save(os.path.join(array_path,'inf_spk_var.npy'),embedding_spk_var)
np.save(os.path.join(array_path,'inf_acc_id.npy'),embedding_accent_id)
np.save(os.path.join(array_path,'inf_spk_id.npy'),embedding_speaker_id)
# output = model(
# *(batch[2:-2]),
# spker_embeds=batch[-2],
# accents=batch[-1],
# p_control=pitch_control,
# e_control=energy_control,
# d_control=duration_control
# )
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# parser.add_argument(
# "--mode",
# type=str,
# choices=["batch", "single"],
# required=True,
# help="Synthesize a whole dataset or a single sentence",
# )
# parser.add_argument(
# "--pitch_control",
# type=float,
# default=1.0,
# help="control the pitch of the whole utterance, larger value for higher pitch",
# )
# parser.add_argument(
# "--energy_control",
# type=float,
# default=1.0,
# help="control the energy of the whole utterance, larger value for larger volume",
# )
# parser.add_argument(
# "--duration_control",
# type=float,
# default=1.0,
# help="control the speed of the whole utterance, larger value for slower speaking rate",
# )
args = parser.parse_args()
args.dataset='L2ARCTIC'
args.pitch_control=1.0
args.energy_control=1.0
args.duration_control=1.0
args.mode='batch'
args.source='val_unsup.txt'
# args.source=None
# args.speaker_id='NCC'
# args.basename='SVBI_a0009'
args.speaker_id='EBVS'
args.accent='Chinese'
# args.accent2='Arabic'
# args.accw=1
# args.accw2=0
# args.basename='HKK_a0019'
args.restore_step=720000
args.text=None
# args.text='He turned sharply and faced Gregson across the table'
# args.siga=0.001
# args.sigs=-0.001
# args.flata=True
# args.flats=True
# Check source texts
if args.mode == "batch":
assert args.source is not None and args.text is None
if args.mode == "single":
assert args.source is None and args.text is not None
# Read Config
preprocess_config, model_config, train_config = get_configs_of(args.dataset)
configs = (preprocess_config, model_config, train_config)
if preprocess_config["preprocessing"]["pitch"]["pitch_type"] == "cwt":
from utils.pitch_tools import get_lf0_cwt
preprocess_config["preprocessing"]["pitch"]["cwt_scales"] = get_lf0_cwt(np.ones(10))[1]
os.makedirs(
os.path.join(train_config["path"]["result_path"], str(args.restore_step)), exist_ok=True)
os.makedirs(
os.path.join(train_config["path"]["array_path"]), exist_ok=True)
# Set Device
torch.manual_seed(train_config["seed"])
if torch.cuda.is_available():
torch.cuda.manual_seed(train_config["seed"])
device = torch.device('cuda')
else:
device = torch.device('cpu')
print("Device of CompTransTTS:", device)
# Get model
model = get_model(args, configs, device, train=False)
# Load vocoder
vocoder = get_vocoder(model_config, device)
# Preprocess texts
if args.mode == "batch":
# Get dataset
learn_alignment = model_config["duration_modeling"]["learn_alignment"]
# dataset_tag = "unsup" if learn_alignment else "sup"
dataset_tag='unsup'
dataset = Dataset(
"val_{}.txt".format(dataset_tag), preprocess_config, model_config, train_config, sort=True, drop_last=False
)
# dataset = TextDataset(args.source, preprocess_config, model_config)
batchs = DataLoader(
dataset,
batch_size=64,
collate_fn=dataset.collate_fn,
)
control_values = args.pitch_control, args.energy_control, args.duration_control
extract_stats_fc(device, model, args, configs, vocoder, batchs, control_values)
if args.mode == "single":
ids = raw_texts = [args.text[:100]]
# Speaker Info
load_spker_embed = model_config["multi_speaker"] \
and preprocess_config["preprocessing"]["speaker_embedder"] != 'none'
with open(os.path.join(preprocess_config["path"]["preprocessed_path"], "speakers.json")) as f:
speaker_map = json.load(f)
speakers = np.array([speaker_map[args.speaker_id]]) if model_config["multi_speaker"] else np.array([0]) # single speaker is allocated 0
spker_embed = np.load(os.path.join(
preprocess_config["path"]["preprocessed_path"],
"spker_embed",
"{}-spker_embed.npy".format(args.speaker_id),
)) if load_spker_embed else None
if preprocess_config["preprocessing"]["text"]["language"] == "en":
texts = np.array([preprocess_english(args.text, preprocess_config)])
# elif preprocess_config["preprocessing"]["text"]["language"] == "zh":
# texts = np.array([preprocess_mandarin(args.text, preprocess_config)])
text_lens = np.array([len(texts[0])])
# SINGLE ONE
# with open(os.path.join(preprocess_config["path"]["preprocessed_path"], "accents.json")) as f:
# accent_map = json.load(f)
# accents_to_indices = dict()
# for _idx, acc in enumerate(preprocess_config['accents']):
# accents_to_indices[acc] = _idx
# accents = np.array([accents_to_indices[accent_map[ref_spk]]])
# SAMPLING one
acc_name=args.accent
accents_to_indices = dict()
for _idx, acc in enumerate(preprocess_config['accents']):
accents_to_indices[acc] = _idx
accents = np.array([accents_to_indices[acc_name]])
batchs = [(ids, raw_texts, speakers, texts, text_lens, max(text_lens), spker_embed, accents)]