diff --git a/train.py b/train.py index 6198cbff..4dff04b8 100644 --- a/train.py +++ b/train.py @@ -149,18 +149,12 @@ def main( vm = "" , isPrintArgs = True ): ##### Not smoothing evaluation loss ##### eval_loss_func = nn.CrossEntropyLoss(ignore_index=CHORD_PAD) - # eval_loss_func_root = nn.CrossEntropyLoss(ignore_index=CHORD_ROOT_PAD) - # eval_loss_func_attr = nn.CrossEntropyLoss(ignore_index=CHORD_ATTR_PAD) ##### SmoothCrossEntropyLoss or CrossEntropyLoss for training ##### if(args.ce_smoothing is None): train_loss_func = eval_loss_func - # train_loss_func_root = eval_loss_func_root - # train_loss_func_attr = eval_loss_func_attr else: train_loss_func = SmoothCrossEntropyLoss(args.ce_smoothing, CHORD_SIZE, ignore_index=CHORD_PAD) - # train_loss_func_root = SmoothCrossEntropyLoss(args.ce_smoothing, CHORD_ROOT_SIZE, ignore_index=CHORD_ROOT_PAD) - # train_loss_func_attr = SmoothCrossEntropyLoss(args.ce_smoothing, CHORD_ATTR_SIZE, ignore_index=CHORD_ATTR_PAD) eval_loss_emotion_func = nn.BCEWithLogitsLoss() train_loss_emotion_func = eval_loss_emotion_func @@ -172,8 +166,6 @@ def main( vm = "" , isPrintArgs = True ): else: lr_scheduler = None - # opt = Adam(model.parameters(), lr=1e-3, weight_decay=1e-5) - # lr_scheduler = LambdaLR(opt, lr_stepper.step) ##### Tracking best evaluation accuracy ##### best_eval_acc = 0.0 @@ -208,17 +200,6 @@ def main( vm = "" , isPrintArgs = True ): print(SEPERATOR) print("Baseline model evaluation (Epoch 0):") - # Eval v19 - # train_loss, train_acc = eval_model(model, train_loader, - # train_loss_func, train_loss_func_root, train_loss_func_attr, - # isVideo= args.is_video) - - # eval_loss, eval_acc = eval_model(model, val_loader, - # eval_loss_func, eval_loss_func_root, eval_loss_func_attr, - # isVideo= args.is_video) - - # Eval - train_metric_dict = eval_model(model, train_loader, train_loss_func, train_loss_emotion_func, isVideo= args.is_video) @@ -226,9 +207,7 @@ def main( vm = "" , isPrintArgs = True ): train_total_loss = train_metric_dict["avg_total_loss"] train_loss_chord = train_metric_dict["avg_loss_chord"] train_loss_emotion = train_metric_dict["avg_loss_emotion"] - train_acc = train_metric_dict["avg_acc"] - train_cor = train_metric_dict["avg_cor"] - train_acc_cor = train_metric_dict["avg_acc_cor"] + train_h1 = train_metric_dict["avg_h1"] train_h3 = train_metric_dict["avg_h3"] train_h5 = train_metric_dict["avg_h5"] @@ -240,9 +219,7 @@ def main( vm = "" , isPrintArgs = True ): eval_total_loss = eval_metric_dict["avg_total_loss"] eval_loss_chord = eval_metric_dict["avg_loss_chord"] eval_loss_emotion = eval_metric_dict["avg_loss_emotion"] - eval_acc = eval_metric_dict["avg_acc"] - eval_cor = eval_metric_dict["avg_cor"] - eval_acc_cor = eval_metric_dict["avg_acc_cor"] + eval_h1 = eval_metric_dict["avg_h1"] eval_h3 = eval_metric_dict["avg_h3"] eval_h5 = eval_metric_dict["avg_h5"] @@ -254,23 +231,14 @@ def main( vm = "" , isPrintArgs = True ): print("Avg train loss (total):", train_total_loss) print("Avg train loss (chord):", train_loss_chord) print("Avg train loss (emotion):", train_loss_emotion) - - print("Avg train acc:", train_acc) - print("Avg train cor:", train_cor) - print("Avg train acc_cor:", train_acc_cor) print("Avg train h1:", train_h1) print("Avg train h3:", train_h3) print("Avg train h5:", train_h5) - print("Avg val loss (total):", eval_total_loss) print("Avg val loss (chord):", eval_loss_chord) print("Avg val loss (emotion):", eval_loss_emotion) - - print("Avg val acc:", eval_acc) - print("Avg val cor:", eval_cor) - print("Avg val acc_cor:", eval_acc_cor) print("Avg val h1:", eval_h1) print("Avg val h3:", eval_h3)