-
Notifications
You must be signed in to change notification settings - Fork 29
/
train.py
711 lines (612 loc) · 32.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
import time
import argparse
import json
import logging
import math
import os
import gc
# from tqdm import tqdm
from pathlib import Path
import datasets
import numpy as np
import pandas as pd
import wandb
import torch
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from datasets import load_dataset
from torch.utils.data import Dataset, DataLoader
from tqdm.auto import tqdm
import soundfile as sf
import diffusers
import transformers
import tools.torch_tools as torch_tools
from huggingface_hub import snapshot_download
from models import build_pretrained_models, MusicAudioDiffusion, AudioDiffusion
from transformers import SchedulerType, get_scheduler
from spacy.lang.en import English
import random
# from transformers.optimization import Adafactor
# import bitsandbytes as bnb
logger = get_logger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a diffusion model for text to audio generation task.")
parser.add_argument(
"--train_file", type=str, default="data/MusicBench_train.json",
help="A csv or a json file containing the training data."
)
parser.add_argument(
"--validation_file", type=str, default="data/MusicBench_testA.json",
help="A csv or a json file containing the validation data."
)
parser.add_argument(
"--validation_file2", type=str, default="data/MusicBench_testB.json",
help="A csv or a json file containing the validation data."
)
parser.add_argument(
"--test_file", type=str, default="data/MusicBench_testA.json",
help="A csv or a json file containing the test data for generation."
)
parser.add_argument(
"--num_examples", type=int, default=-1,
help="How many examples to use for training and validation.",
)
parser.add_argument(
"--text_encoder_name", type=str,
default="google/flan-t5-large",
help="Text encoder identifier from huggingface.co/models.",
)
parser.add_argument(
"--scheduler_name", type=str, default="stabilityai/stable-diffusion-2-1",
help="Scheduler identifier.",
)
parser.add_argument(
"--unet_model_name", type=str, default=None,
help="UNet model identifier from huggingface.co/models.",
)
parser.add_argument(
"--unet_model_config", type=str, default="configs/diffusion_model_config.json", #choose between configs/diffusion_model_config.json for Tango and configs/diffusion_model_config_munet.json for Mustango
help="UNet model config json path.",
)
parser.add_argument(
"--hf_model", type=str, default=None,
help="Tango model identifier from huggingface: declare-lab/tango",
)
parser.add_argument(
"--snr_gamma", type=float, default=5,
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
"More details here: https://arxiv.org/abs/2303.09556.",
)
parser.add_argument(
"--freeze_text_encoder", action="store_true", default=True,
help="Freeze the text encoder model.",
)
parser.add_argument(
"--text_column", type=str, default="main_caption",
help="The name of the column in the datasets containing the input texts.",
)
parser.add_argument(
"--text2_column", type=str, default="alt_caption",
help="The name of the column in the datasets containing the second set of input texts.",
)
parser.add_argument(
"--audio_column", type=str, default="location",
help="The name of the column in the datasets containing the audio paths.",
)
parser.add_argument(
"--beats_column", type=str, default="beats",
help="The name of the column in the datasets containing the beats music feature.",
)
parser.add_argument(
"--chords_column", type=str, default="chords",
help="The name of the column in the datasets containing the chords music feature.",
)
parser.add_argument(
"--chords_time_column", type=str, default="chords_time",
help="The name of the column in the datasets containing the chords music feature.",
)
parser.add_argument(
"--uncondition", action="store_true", default=False,
help="10% uncondition for training.",
)
parser.add_argument(
"--uncondition_all", action="store_true", default=False,
help="5% uncondition for training.",
)
parser.add_argument(
"--uncondition_single", action="store_true", default=False,
help="5% uncondition probability for training applied separately to single inputs - chords, beats, text",
)
parser.add_argument(
"--drop_sentences", action="store_true", default=False,
help="Allow preset sentence dropping when loading the data.",
)
parser.add_argument(
"--random_pick_text_column", action="store_true", default=False,
help="Allow random choice of original/chatgpt prompts when dataloading. (augmented dataset)",
)
parser.add_argument(
"--model_type", type=str, default="Mustango", #or "Tango"
help="Pick model between Tango and Mustango! Don't forget to change the diffusion config too!",
)
parser.add_argument(
"--prefix", type=str, default=None,
help="Add prefix in text prompts.",
)
parser.add_argument(
"--per_device_train_batch_size", type=int, default=1,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size", type=int, default=1,
help="Batch size (per device) for the validation dataloader.",
)
parser.add_argument(
"--learning_rate", type=float, default=4.5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--weight_decay", type=float, default=1e-8,
help="Weight decay to use."
)
parser.add_argument(
"--num_train_epochs", type=int, default=100,
help="Total number of training epochs to perform."
)
parser.add_argument(
"--max_train_steps", type=int, default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps", type=int, default=4,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type", type=SchedulerType, default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0,
help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--adam_beta1", type=float, default=0.9,
help="The beta1 parameter for the Adam optimizer."
)
parser.add_argument(
"--adam_beta2", type=float, default=0.999,
help="The beta2 parameter for the Adam optimizer."
)
parser.add_argument(
"--adam_weight_decay", type=float, default=1e-2,
help="Weight decay to use."
)
parser.add_argument(
"--adam_epsilon", type=float, default=1e-08,
help="Epsilon value for the Adam optimizer"
)
parser.add_argument(
"--output_dir", type=str, default=None,
help="Where to store the final model."
)
parser.add_argument(
"--seed", type=int, default=1234,
help="A seed for reproducible training."
)
parser.add_argument(
"--checkpointing_steps", type=str, default="best",
help="Whether the various states should be saved at the end of every 'epoch' or 'best' whenever validation loss decreases.",
)
parser.add_argument(
"--save_every", type=int, default=5,
help="Save model after every how many epochs when checkpointing_steps is set to best."
)
parser.add_argument(
"--resume_from_checkpoint", type=str, default=None,
help="If the training should continue from a local checkpoint folder.",
)
parser.add_argument(
"--with_tracking", action="store_true",
help="Whether to enable experiment trackers for logging.",
)
parser.add_argument(
"--report_to", type=str, default="all",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations.'
"Only applicable when `--with_tracking` is passed."
),
)
args = parser.parse_args()
# Sanity checks
if args.train_file is None and args.validation_file is None:
raise ValueError("Need a training/validation file.")
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if args.validation_file is not None:
extension = args.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
return args
class Text2AudioDataset(Dataset):
def __init__(self, dataset, prefix, text_column, audio_column, beats_column, chords_column, chords_time_column, num_examples=-1):
inputs = list(dataset[text_column])
self.inputs = [prefix + inp for inp in inputs]
self.audios = list(dataset[audio_column])
self.beats = list(dataset[beats_column])#TODO
self.chords = list(dataset[chords_column])
self.chords_time = list(dataset[chords_time_column])
self.indices = list(range(len(self.inputs)))
self.mapper = {}
for index, audio, text, beats, chords in zip(self.indices, self.audios, inputs, self.beats, self.chords):
self.mapper[index] = [audio, text, beats, chords] #TODO
if num_examples != -1:
self.inputs, self.audios, self.beats, self.chords = self.inputs[:num_examples], self.audios[:num_examples], self.beats[:num_examples], self.chords[:num_examples]
self.indices = self.indices[:num_examples]
def __len__(self):
return len(self.inputs)
def get_num_instances(self):
return len(self.inputs)
def __getitem__(self, index):
s1, s2, s3, s4, s5, s6 = self.inputs[index], self.audios[index], self.beats[index], self.chords[index], self.chords_time[index], self.indices[index]
return s1, s2, s3, s4, s5, s6
def collate_fn(self, data):
dat = pd.DataFrame(data)
return [dat[i].tolist() for i in dat]
class Text2AudioDataset_ext(Dataset): #This dataset uses 2 text columns, so that you can pick between original/chatgpt rephrased caption during dataloading!
def __init__(self, dataset, prefix, text_column, text2_column, audio_column, beats_column, chords_column, chords_time_column, num_examples=-1):
inputs = list(dataset[text_column])
inputs2 = list(dataset[text2_column])
self.inputs = [prefix + inp for inp in inputs]
self.inputs2 = [prefix + inp for inp in inputs2]
self.audios = list(dataset[audio_column])
self.beats = list(dataset[beats_column])#TODO
self.chords = list(dataset[chords_column])
self.chords_time = list(dataset[chords_time_column])
self.indices = list(range(len(self.inputs)))
self.mapper = {}
for index, audio, text, text2, beats, chords in zip(self.indices, self.audios, inputs, inputs2, self.beats, self.chords):
self.mapper[index] = [audio, text, text2, beats, chords] #TODO
if num_examples != -1:
self.inputs, self.inputs2, self.audios, self.beats, self.chords = self.inputs[:num_examples], self.inputs2[:num_examples], self.audios[:num_examples], self.beats[:num_examples], self.chords[:num_examples]
self.indices = self.indices[:num_examples]
def __len__(self):
return len(self.inputs)
def get_num_instances(self):
return len(self.inputs)
def __getitem__(self, index):
s1, s2, s3, s4, s5, s6, s7 = self.inputs[index], self.inputs2[index], self.audios[index], self.beats[index], self.chords[index], self.chords_time[index], self.indices[index]
return s1, s2, s3, s4, s5, s6, s7
def collate_fn(self, data):
dat = pd.DataFrame(data)
return [dat[i].tolist() for i in dat]
def main():
args = parse_args()
accelerator_log_kwargs = {}
if args.with_tracking:
accelerator_log_kwargs["log_with"] = args.report_to
accelerator_log_kwargs["logging_dir"] = args.output_dir
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, **accelerator_log_kwargs)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
datasets.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle output directory creation and wandb tracking
if accelerator.is_main_process:
if args.output_dir is None or args.output_dir == "":
args.output_dir = "saved/" + str(int(time.time()))
if not os.path.exists("saved"):
os.makedirs("saved")
os.makedirs(args.output_dir, exist_ok=True)
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs("{}/{}".format(args.output_dir, "outputs"), exist_ok=True)
with open("{}/summary.jsonl".format(args.output_dir), "a") as f:
f.write(json.dumps(dict(vars(args))) + "\n\n")
accelerator.project_configuration.automatic_checkpoint_naming = False
wandb.init(project="Text to Music Diffusion")
accelerator.wait_for_everyone()
# Get the datasets
data_files = {}
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files["validation"] = args.validation_file #one file can be without any control sentences in text prompts
data_files["validation2"] = args.validation_file2 #another file can have all control sentences inside prompts
if args.test_file is not None:
data_files["test"] = args.test_file
else:
if args.validation_file is not None:
data_files["test"] = args.validation_file
extension = args.train_file.split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files)
text_column, text2_column, audio_column, beats_column, chords_column, chords_time_column = args.text_column, args.text2_column, args.audio_column, args.beats_column, args.chords_column, args.chords_time_column #upd Nic delete
# Initialize models
pretrained_model_name = "audioldm-s-full"
vae, stft = build_pretrained_models(pretrained_model_name)
vae.eval()
stft.eval()
if args.model_type=='Tango':
model = AudioDiffusion(
args.text_encoder_name, args.scheduler_name, args.unet_model_name, args.unet_model_config, args.snr_gamma, args.freeze_text_encoder, args.uncondition
)
elif args.model_type=='Mustango':
model = MusicAudioDiffusion(
args.text_encoder_name, args.scheduler_name, args.unet_model_name, args.unet_model_config, args.snr_gamma, args.freeze_text_encoder, args.uncondition
)
if args.hf_model:
hf_model_path = snapshot_download(repo_id=args.hf_model)
model.load_state_dict(torch.load("{}/pytorch_model_main.bin".format(hf_model_path), map_location="cpu"))
accelerator.print("Successfully loaded checkpoint from:", args.hf_model)
if args.prefix:
prefix = args.prefix
else:
prefix = ""
with accelerator.main_process_first():
if args.random_pick_text_column:
train_dataset = Text2AudioDataset_ext(raw_datasets["train"], prefix, text_column, text2_column, audio_column, beats_column, chords_column, chords_time_column, args.num_examples) #using both text columns
else:
train_dataset = Text2AudioDataset(raw_datasets["train"], prefix, text_column, audio_column, beats_column, chords_column, chords_time_column, args.num_examples) #using single text column
eval_dataset = Text2AudioDataset(raw_datasets["validation"], prefix, text_column, audio_column, beats_column, chords_column, chords_time_column, args.num_examples)
eval_dataset2 = Text2AudioDataset(raw_datasets["validation2"], prefix, text_column, audio_column, beats_column, chords_column, chords_time_column, args.num_examples)
test_dataset = Text2AudioDataset(raw_datasets["test"], prefix, text_column, audio_column, beats_column, chords_column, chords_time_column, args.num_examples)
accelerator.print("Num instances in train: {}, validation: {}, test: {}".format(train_dataset.get_num_instances(), eval_dataset.get_num_instances(), test_dataset.get_num_instances()))
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=args.per_device_train_batch_size, collate_fn=train_dataset.collate_fn)
eval_dataloader = DataLoader(eval_dataset, shuffle=False, batch_size=args.per_device_eval_batch_size, collate_fn=eval_dataset.collate_fn) #to monitor loss on prompts without control sentences
eval_dataloader2 = DataLoader(eval_dataset2, shuffle=False, batch_size=args.per_device_eval_batch_size, collate_fn=eval_dataset.collate_fn) #to monitor loss on prompts with all control sentences
test_dataloader = DataLoader(test_dataset, shuffle=False, batch_size=args.per_device_eval_batch_size, collate_fn=test_dataset.collate_fn)
# Optimizer
if args.freeze_text_encoder:
for param in model.text_encoder.parameters():
param.requires_grad = False
model.text_encoder.eval()
if args.unet_model_config:
if args.model_type=='Tango':
optimizer_parameters = model.unet.parameters()
accelerator.print("Optimizing UNet parameters.")
elif args.model_type=='Mustango':
optimizer_parameters = list(model.unet.parameters()) + list(model.beat_embedding_layer.parameters()) + list(model.chord_embedding_layer.parameters())
accelerator.print("Optimizing MUNet, beat_emb, and chord_emb layer parameters.")
else:
optimizer_parameters = list(model.unet.parameters()) + list(model.group_in.parameters()) + list(model.group_out.parameters())
accelerator.print("Optimizing UNet and channel transformer parameters.")
else:
optimizer_parameters = model.parameters()
accelerator.print("Optimizing Text Encoder and UNet parameters.")
num_trainable_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
accelerator.print("Num trainable parameters: {}".format(num_trainable_parameters))
optimizer = torch.optim.AdamW(
optimizer_parameters, lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
# Prepare everything with our `accelerator`.
vae, stft, model, optimizer, lr_scheduler = accelerator.prepare(
vae, stft, model, optimizer, lr_scheduler
)
train_dataloader, eval_dataloader, eval_dataloader2, test_dataloader = accelerator.prepare(
train_dataloader, eval_dataloader, eval_dataloader2, test_dataloader
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Figure out how many steps we should save the Accelerator states
checkpointing_steps = args.checkpointing_steps
if checkpointing_steps is not None and checkpointing_steps.isdigit():
checkpointing_steps = int(checkpointing_steps)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if args.with_tracking:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("text_to_audio_diffusion", experiment_config)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
starting_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.load_state(args.resume_from_checkpoint)
# path = os.path.basename(args.resume_from_checkpoint)
accelerator.print(f"Resumed from local checkpoint: {args.resume_from_checkpoint}")
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
# path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Duration of the audio clips in seconds
duration, best_loss = 10, np.inf
if args.drop_sentences: #option to drop a portion of sentences during train dataloading with a random probability, described in Section 5.2 as dropout number 3
print('Drop_sentence is set to True, initializing spacy sentencizer')
nlp = English()
nlp.add_pipe("sentencizer")
sent_lengths=[]
for step, batch in enumerate(train_dataloader):
if args.random_pick_text_column:
text, text2, audios, beats, chords, chords_time, _ = batch
else:
text, audios, beats, chords, chords_time, _ = batch
for i in range(len(text)):
sent_lengths.append(len(list(nlp(text[i]).sents)))
sent_length_mean=np.mean(np.array(sent_lengths))
for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
total_loss, total_val_loss, total_val_loss2 = 0, 0, 0
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(model):
device = model.device
target_length = int(duration * 102.4)
if args.random_pick_text_column:
text, text2, audios, beats, chords, chords_time, _ = batch
# with X prob, choose text or text2 (chatgpt vs original)
if (random.random()<0.15): #in 15% of augmented cases, take original prompts, in 85% take chatgpt
text=text2
del text2
else:
del text2
else:
text, audios, beats, chords, chords_time, _ = batch
if args.drop_sentences: #described in Section 5.2 as dropout number 3
text_out=[]
for i in range(len(text)):
sentences = list(nlp(text[i]).sents)
sent_length = len(sentences)
drop_binary = (random.random()*sent_length/sent_length_mean) < 0.1
if drop_binary:
if sent_length<4:
how_many_to_drop = int(np.floor((20 + random.random()*30)/100*sent_length)) #between 20 and 50 percent of sentences
else:
how_many_to_drop = int(np.ceil((20 + random.random()*30)/100*sent_length)) #between 20 and 50 percent of sentences
which_to_drop = np.random.choice(sent_length,how_many_to_drop,replace=False)
new_sentences = [sentences[i] for i in range(sent_length) if i not in which_to_drop.tolist()]
new_sentences = " ".join([new_sentences[i].text for i in range(len(new_sentences))]) #combine sentences back with a space
text_out.append(new_sentences)
else:
text_out.append(text[i])
text=text_out
if args.uncondition_all: # described in Section 5.2 as dropout number 1
for i in range(len(text)):
if (random.random()<0.05): #5% chance to drop it all
text[i]=""
beats[i]=[[],[]]
chords[i]=[]
chords_time[i]=[]
if args.uncondition_single: #5% chance to drop single ones only... described in Section 5.2 as dropout number 2
for i in range(len(text)):
if (random.random()<0.05):
text[i]=""
if (random.random()<0.05):
beats[i]=[[],[]]
if (random.random()<0.05):
chords[i]=[]
chords_time[i]=[]
with torch.no_grad():
unwrapped_vae = accelerator.unwrap_model(vae)
mel, _, waveform = torch_tools.wav_to_fbank(audios, target_length, stft)
mel = mel.unsqueeze(1).to(device) #batch, 1, time, freq; [2, 1, 1024, 64]
true_latent = unwrapped_vae.get_first_stage_encoding(unwrapped_vae.encode_first_stage(mel)) #batch, channels, time_compressed, freq_compressed [2, 8, 256, 16]
if args.model_type=='Tango':
loss = model(true_latent, text, validation_mode=False)
elif args.model_type=='Mustango':
loss = model(true_latent, text, beats, chords, chords_time, validation_mode=False) # need to pass the audio here instead of `text`
total_loss += loss.detach().float()
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
output_dir = f"step_{completed_steps }"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if completed_steps >= args.max_train_steps:
break
model.eval()
model.uncondition = False
eval_progress_bar = tqdm(range(len(eval_dataloader)), disable=not accelerator.is_local_main_process)
for step, batch in enumerate(eval_dataloader):
with accelerator.accumulate(model) and torch.no_grad():
device = model.device
text, audios, beats, chords, chords_time, _ = batch
target_length = int(duration * 102.4)
unwrapped_vae = accelerator.unwrap_model(vae)
mel, _, waveform = torch_tools.wav_to_fbank(audios, target_length, stft)
mel = mel.unsqueeze(1).to(device)
true_latent = unwrapped_vae.get_first_stage_encoding(unwrapped_vae.encode_first_stage(mel))
if args.model_type=='Tango':
val_loss = model(true_latent, text, validation_mode=True)
elif args.model_type=='Mustango':
val_loss = model(true_latent, text, beats, chords, chords_time, validation_mode=True)
total_val_loss += val_loss.detach().float()
eval_progress_bar.update(1)
eval_progress_bar2 = tqdm(range(len(eval_dataloader2)), disable=not accelerator.is_local_main_process)
for step, batch in enumerate(eval_dataloader2):
with accelerator.accumulate(model) and torch.no_grad():
device = model.device
text, audios, beats, chords, chords_time, _ = batch
target_length = int(duration * 102.4)
unwrapped_vae = accelerator.unwrap_model(vae)
mel, _, waveform = torch_tools.wav_to_fbank(audios, target_length, stft)
mel = mel.unsqueeze(1).to(device)
true_latent = unwrapped_vae.get_first_stage_encoding(unwrapped_vae.encode_first_stage(mel))
if args.model_type=='Tango':
val_loss2 = model(true_latent, text, validation_mode=True)
elif args.model_type=='Mustango':
val_loss2 = model(true_latent, text, beats, chords, chords_time, validation_mode=True)
total_val_loss2 += val_loss2.detach().float()
eval_progress_bar2.update(1)
model.uncondition = args.uncondition
if accelerator.is_main_process:
result = {}
result["epoch"] = epoch+1,
result["step"] = completed_steps
result["train_loss"] = round(total_loss.item()/len(train_dataloader), 4)
result["val_loss"] = round(total_val_loss.item()/len(eval_dataloader), 4)
result["val_loss2"] = round(total_val_loss2.item()/len(eval_dataloader2), 4)
wandb.log(result)
result_string = "Epoch: {}, Loss Train: {}, Val: {}, Val2: {}\n".format(epoch, result["train_loss"], result["val_loss"], result["val_loss2"])
accelerator.print(result_string)
with open("{}/summary.jsonl".format(args.output_dir), "a") as f:
f.write(json.dumps(result) + "\n\n")
logger.info(result)
if result["val_loss"] < best_loss:
best_loss = result["val_loss"]
save_checkpoint = True
else:
save_checkpoint = False
if args.with_tracking:
accelerator.log(result, step=completed_steps)
accelerator.wait_for_everyone()
if accelerator.is_main_process and args.checkpointing_steps == "best":
if save_checkpoint:
accelerator.save_state("{}/{}".format(args.output_dir, "best"))
if (epoch + 1) % args.save_every == 0:
accelerator.save_state("{}/{}".format(args.output_dir, "epoch_" + str(epoch+1)))
if accelerator.is_main_process and args.checkpointing_steps == "epoch":
accelerator.save_state("{}/{}".format(args.output_dir, "epoch_" + str(epoch+1)))
if __name__ == "__main__":
main()