-
Notifications
You must be signed in to change notification settings - Fork 29
ANTsXNet cortical thickness
Nick Tustison edited this page Oct 29, 2020
·
2 revisions
import ants
import antspynet
# ANTsPy/ANTsPyNet processing for subject IXI002-Guys-0828-T1
t1_file = "IXI002-Guys-0828-T1.nii.gz"
t1 = ants.image_read(t1_file)
# Atropos six-tissue segmentation
atropos = antspynet.deep_atropos(t1, do_preprocessing=True, verbose=True)
# Kelly Kapowski cortical thickness
kk_segmentation = atropos['segmentation_image']
kk_segmentation[kk_segmentation == 4] = 3
gray_matter = atropos['probability_images'][2]
white_matter = (atropos['probability_images'][3] + atropos['probability_images'][4])
kk = ants.kelly_kapowski(s=kk_segmentation, g=gray_matter, w=white_matter,
its=45, r=0.025, m=1.5, x=0, verbose=1)
# Desikan-Killiany-Tourville labeling
dkt = antspynet.desikan_killiany_tourville_labeling(t1, do_preprocessing=True, verbose=True)
# DKT label propagation throughout the cortex
dkt_cortical_mask = ants.threshold_image(dkt, 1000, 3000, 1, 0)
dkt = dkt_cortical_mask * dkt
kk_mask = ants.threshold_image(kk, 0, 0, 0, 1)
dkt_propagated = ants.iMath(kk_mask, "PropagateLabelsThroughMask", kk_mask * dkt)
# Get average regional thickness values
kk_regional_stats = ants.label_stats(kk, dkt_propagated)