-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathpreprocessing.py
116 lines (98 loc) · 3.71 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
from tqdm import tqdm
from utils.BVH_FILE import read_bvh
def to_unix_name_format(file_names):
file_list = [each.replace(' ', '\ ') for each in file_names]
file_list = [each.replace('(', '\(') for each in file_list]
file_list = [each.replace(')', '\)') for each in file_list]
return file_list
def move_bvh_files(src, dst):
"""
:param src: source folder e.g. "./datasets/Mixamo_fbx/Aj"
:param dst: destination folder e.g. "./datasets/Mixamo/Aj"
:return: None
"""
file_list = os.listdir(src)
file_list = [each for each in file_list if '.bvh' in each]
file_list = to_unix_name_format(file_list)
pbar = tqdm(file_list)
for file in pbar:
src_path = os.path.join(src, file)
dst_path = os.path.join(dst, file)
cmd = f'cp {src_path} {dst_path}'
os.system(cmd)
pbar.set_description('moving bvh files')
return
def delete_files(folder: str, file_list: list):
file_list = to_unix_name_format(file_list)
for file in file_list:
del_path = os.path.join(folder, file)
cmd = f'rm {del_path}'
os.system(cmd)
return
def has_equal_frame(path1: str, path2: str) -> bool:
anim1, names1, _ = read_bvh(path1)
anim2, names2, _ = read_bvh(path2)
frame1 = anim1.positions.shape[0]
frame2 = anim2.positions.shape[0]
if frame1 != frame2:
# print('*'*10)
# print('Frame nor equal')
# print(path1)
# print(path2)
return False
elif anim1.positions.shape[0] < 32 or anim2.positions.shape[0] < 32:
# print('*' * 10)
# print("Frame too short")
return False
else:
return True
def write_txt_file(mode: str, file_names: list):
save_name = f'./datasets/Mixamo/{mode}_bvh_files.txt'
file_names = [each + '\n' for each in file_names]
with open(save_name, 'w+') as f:
for file_name in file_names:
f.write(file_name)
return
def split_train_val_files(folder_1, folder_2):
file_list1 = os.listdir(folder_1)
file_list2 = os.listdir(folder_2)
# take the union set
file_list = list(set(file_list1) & set(file_list2))
# take the rest set
del_files_1 = list(set(file_list1) - set(file_list))
del_files_2 = list(set(file_list2) - set(file_list))
# check whether the frame number are equal
bad_files = []
for idx, file in enumerate(file_list):
# define the path to the bvh files
path_1 = os.path.join(folder_1, file)
path_2 = os.path.join(folder_2, file)
if not has_equal_frame(path_1, path_2):
del_files_1.append(file)
del_files_2.append(file)
bad_files.append(file)
file_list = list(set(file_list) - set(bad_files))
# delete the bad data, bad means unpaired or have different number of frame
delete_files(folder_1, del_files_1)
delete_files(folder_2, del_files_2)
# create 2 txt file contains the train and val bvh files name
print("There are ", len(file_list), " files")
val_names = file_list[::10]
train_names = list(set(file_list) - set(val_names))
write_txt_file('train', train_names)
write_txt_file('validate', val_names)
return
if __name__ == "__main__":
# convert the fbx file into bvh file
cmd_blender = 'blender -b -P ./datasets/fbx2bvh.py'
os.system(cmd_blender)
# move the bvh files into .dataset/Mixamo folder
src = "./datasets/Mixamo_fbx/Aj"
dst = "./datasets/Mixamo/Aj"
move_bvh_files(src, dst)
src = "./datasets/Mixamo_fbx/BigVegas"
dst = "./datasets/Mixamo/BigVegas"
move_bvh_files(src, dst)
# create train and validation files list
split_train_val_files(folder_1="./datasets/Mixamo/Aj", folder_2="./datasets/Mixamo/BigVegas")