-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
49 lines (38 loc) · 1.65 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
import torch
from torch.utils.data import Dataset
import librosa
signal_train_clean_folder = './data/signal_train_clean_folder'
signal_train_noisy_folder = './data/signal_train_noisy_folder'
signal_test_clean_folder = './data/signal_test_clean_folder'
signal_test_noisy_folder = './data/signal_test_noisy_folder'
class AudioDataset(Dataset):
"""
Audio sample reader.
"""
def __init__(self, data_type):
if data_type == 'train':
clean_path = signal_train_clean_folder
noisy_path = signal_train_noisy_folder
elif data_type == 'test':
clean_path = signal_test_clean_folder
noisy_path = signal_test_noisy_folder
else:
raise ValueError
if not os.path.exists(clean_path) or not os.path.exists(noisy_path):
raise FileNotFoundError('The {} data folder does not exist!'.format(data_type))
self.data_type = data_type
self.name_list = os.listdir(clean_path)
self.clean_file_names = [os.path.join(clean_path, filename) for filename in self.name_list]
self.noisy_file_names = [os.path.join(noisy_path, filename) for filename in self.name_list]
def __getitem__(self, idx):
clean_y, _ = librosa.load(self.clean_file_names[idx], sr=16000)
noisy_y, _ = librosa.load(self.noisy_file_names[idx], sr=16000)
clean_t = torch.from_numpy(clean_y)
noisy_t = torch.from_numpy(noisy_y)
if self.data_type == 'train':
return clean_t, noisy_t
else:
return os.path.basename(self.name_list[idx]), clean_t, noisy_t
def __len__(self):
return len(self.name_list)