-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
140 lines (109 loc) · 3.63 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import librosa
import torch
import torch.nn as nn
def draw_loss(tl, vl, epoch, model_name):
plt.figure(figsize=(12, 6))
x1 = np.linspace(0, epoch, len(tl))
plt.plot(x1, tl, 'r--', label=f'train_loss of {model_name}')
x2 = np.linspace(0, epoch, len(vl))
plt.plot(x2, vl, 'g--', label=f'valid_loss of {model_name}')
plt.title('Train and Validation Loss of ' + model_name)
plt.xlabel("Epoch")
plt.ylabel('Loss')
plt.legend()
plt.savefig(f"../figures/{model_name}_loss.png")
plt.close()
return
def draw_gan_loss(dcl, dnl, gl, l1, epoch, using_l1, model_name, loss_type):
if isinstance(loss_type, nn.MSELoss):
description = 'MSE'
elif isinstance(loss_type, nn.BCEWithLogitsLoss):
description = 'BCE'
else:
raise TypeError('No such loss type!')
# G_train_loss, D_train_loss
plt.figure(figsize=(12, 6))
# draw D_noisy loss
x2 = np.linspace(6, epoch, len(dnl))
plt.plot(x2, dnl, 'g--', label=f'D Loss of enhanced speech')
# draw g_loss_
x3 = np.linspace(9, epoch, len(gl))
plt.plot(x3, gl, 'b--', label='G Loss')
# draw L1 loss
x4 = np.linspace(0, epoch, len(l1))
plt.plot(x4, l1, 'k--', label='L1 distance between clean and enhanced spectrogram')
if using_l1:
plt.title(f'Loss of {model_name} with L1 restriction')
else:
plt.title(f'Loss of {model_name} without L1 restriction')
plt.xlabel("Epoch")
plt.ylabel('Loss')
plt.legend()
if using_l1:
plt.savefig(f"../figures/{model_name}_loss_L1.png")
else:
plt.savefig(f'../figures/{model_name}_loss_No_L1.png')
plt.close()
return
def emphasis(signal, emph_coeff=0.95, pre=True):
"""
Pre-emphasis or De-emphasis of higher frequencies given a batch of signal.
Args:
signal: signals, represented as numpy arrays
emph_coeff: emphasis coefficient
pre: pre-emphasis or de-emphasis signals
Returns:
result: pre-emphasized or de-emphasized signal
"""
if pre:
x0 = np.reshape(signal[0], (1,))
diff = signal[1:] - emph_coeff * signal[:-1]
concat = np.concatenate((x0, diff), axis=0)
return concat
else:
x = np.zeros(signal.shape[0], dtype=np.float32)
x[0] = signal[0]
for n in range(1, signal.shape[0], 1):
x[n] = emph_coeff * x[n - 1] + signal[n]
return x
def recover_signal(file_list, window_size, stride, sample_rate):
"""
Helper function for recover the sliced enhanced signal
"""
pass
def signal_to_spectrogram(signal):
spec = librosa.stft(signal, n_fft=512, win_length=32, hop_length=16, window='hann')
return spec
# complex to log-power-spectrogram
def log_power_spectrogram(spec):
lps = np.log(np.power(np.abs(spec), 2))
return lps
def get_phase(complex_spectrogram):
phase = np.angle(complex_spectrogram)
return phase
# log-power-spectrogram to magnitude
def lps_to_mag(lps):
mag = np.power(np.exp(lps), 1 / 2)
mag = mag - 1e-20
return mag
# recover complex spectrogram from magnitude
def magnitude_to_complex(magnitude_spectrogram, phase):
complex_spectrogram = magnitude_spectrogram * np.exp(1j * phase)
return complex_spectrogram
# complex to magnitude
def complex_to_mag(spec):
magnitude = np.abs(spec)
return magnitude
# helper function test the in & out of model
def test_in_n_out(model, in_size, z=None):
t = torch.randn(128, 2, in_size)
if z is None:
out = model(t)
else:
out = model(t, z)
print(out.size())
return