-
Notifications
You must be signed in to change notification settings - Fork 53
/
definition.yaml
53 lines (53 loc) · 1.55 KB
/
definition.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
benchmark:
MS COCO Validation:
mAP: 0.331
description: Yolo v3 Tiny is a object detection network, that localizes and identifies
objects in an input image. This is a floating point version that takes a 416x416
input image and outputs detections for this image. This model is generated using
the weights from the [https://pjreddie.com/darknet/yolo/](YOLO website).
license:
- Apache-2.0
network:
file_size_bytes: 35455980
filename: yolo_v3_tiny_darknet_fp32.tflite
framework: TensorFlow Lite
hash:
algorithm: sha1
value: b38f7be6856eed4466493bdc86be1879f4b743fb
provenance: https://pjreddie.com/media/files/yolov3-tiny.weights & https://github.com/mystic123/tensorflow-yolo-v3
network_parameters:
input_nodes:
- description: A 416x416 floating point input image.
example_input:
path: models/object_detection/yolo_v3_tiny/tflite_fp32/testing_input/inputs
name: inputs
shape:
- 1
- 416
- 416
- 3
output_nodes:
- description: A 1xNx85 map of predictions, where the first 4 entries of the 3rd
dimension are the bounding box coordinates and the 5th is the confidence. The
remaining entries are softmax scores for each class.
name: output_boxes
shape:
- 1
- 2535
- 85
test_output_path: models/object_detection/yolo_v3_tiny/tflite_fp32/testing_output/output_boxes
operators:
TensorFlow Lite:
- ADD
- CONCATENATION
- CONV_2D
- EXP
- LOGISTIC
- MAXIMUM
- MAX_POOL_2D
- MUL
- RESHAPE
- RESIZE_NEAREST_NEIGHBOR
- SPLIT_V
- SUB
paper: https://arxiv.org/abs/1804.02767