diff --git a/README.md b/README.md
index dcf9e00..da958db 100644
--- a/README.md
+++ b/README.md
@@ -1,4 +1,3 @@
-
# Model Zoo
![version](https://img.shields.io/badge/version-21.08-0091BD)
> A collection of machine learning models optimized for Arm IP.
@@ -109,7 +108,7 @@
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
- 0.929 |
+ 0.931 |
CNN Medium INT8 * |
@@ -119,7 +118,7 @@
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
- 0.913 |
+ 0.911 |
CNN Small INT8 * |
@@ -129,7 +128,7 @@
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
- 0.914 |
+ 0.912 |
DNN Large INT8 * |
@@ -149,7 +148,7 @@
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
- 0.846 |
+ 0.844 |
DNN Small INT8 * |
@@ -159,7 +158,7 @@
:heavy_check_mark: |
:heavy_check_mark: |
:heavy_check_mark: |
- 0.827 |
+ 0.825 |
DS-CNN Clustered FP32 * |
@@ -199,7 +198,7 @@
:heavy_check_mark: HERO |
:heavy_check_mark: |
:heavy_check_mark: |
- 0.934 |
+ 0.941 |
DS-CNN Small INT8 * |
diff --git a/models/keyword_spotting/cnn_large/tflite_int8/README.md b/models/keyword_spotting/cnn_large/tflite_int8/README.md
index d36c58c..479133f 100644
--- a/models/keyword_spotting/cnn_large/tflite_int8/README.md
+++ b/models/keyword_spotting/cnn_large/tflite_int8/README.md
@@ -17,8 +17,8 @@ Code to recreate this model can be found here: https://github.com/ARM-software/M
| Network Information | Value |
|---------------------|------------------|
| Framework | TensorFlow Lite |
-| SHA-1 Hash | 59e6986c3eca496fa3d54176ac66bb7dc9ff36e0 |
-| Size (Bytes) | 486560 |
+| SHA-1 Hash | a61ab748ae8f52f78ab568342db67a792c6ecf34 |
+| Size (Bytes) | 484600 |
| Provenance | https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m |
| Paper | https://arxiv.org/abs/1711.07128 |
@@ -27,7 +27,7 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Accuracy | 0.929 |
+| Accuracy | 0.931 |
## Performance
| Platform | Optimized |
diff --git a/models/keyword_spotting/cnn_large/tflite_int8/cnn_l_quantized.tflite b/models/keyword_spotting/cnn_large/tflite_int8/cnn_l_quantized.tflite
index e01f0e8..a3e4487 100644
--- a/models/keyword_spotting/cnn_large/tflite_int8/cnn_l_quantized.tflite
+++ b/models/keyword_spotting/cnn_large/tflite_int8/cnn_l_quantized.tflite
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:db7e359e766f96bcafee00ff475672cd0268cdb84156bfdc2b05d70ab24dc32a
-size 486560
+oid sha256:7dee2cb5f152bda13e09593b2355c174c012080b569ba26bce1f4132feb44633
+size 484600
diff --git a/models/keyword_spotting/cnn_large/tflite_int8/definition.yaml b/models/keyword_spotting/cnn_large/tflite_int8/definition.yaml
index fad5eb3..63dcf0d 100644
--- a/models/keyword_spotting/cnn_large/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/cnn_large/tflite_int8/definition.yaml
@@ -1,19 +1,20 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 0.929
+ Accuracy: 93.09%
description: 'This is a fully quantized version (asymmetrical int8) of the CNN Large
model developed by Arm, with training checkpoints, from the Hello Edge paper. Code
to recreate this model can be found here: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m'
license:
- Apache-2.0
network:
- file_size_bytes: 486560
+ file_size_bytes: 484600
filename: cnn_l_quantized.tflite
framework: TensorFlow Lite
hash:
algorithm: sha1
- value: 59e6986c3eca496fa3d54176ac66bb7dc9ff36e0
+ value: a61ab748ae8f52f78ab568342db67a792c6ecf34
provenance: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m
+ quality_level: null
network_parameters:
input_nodes:
- description: The input is a processed MFCCs of shape (1, 490)
diff --git a/models/keyword_spotting/cnn_large/tflite_int8/testing_input/input/0.npy b/models/keyword_spotting/cnn_large/tflite_int8/testing_input/input/0.npy
index 46929f3..f3b09c7 100644
--- a/models/keyword_spotting/cnn_large/tflite_int8/testing_input/input/0.npy
+++ b/models/keyword_spotting/cnn_large/tflite_int8/testing_input/input/0.npy
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:c617e49b3881660f02eb118908b915686b4c9018e0904cc4015731da5b8f083b
-size 2088
+oid sha256:7f12421d1892c3c971f2cde7e9effb1334d0ebf4dc408dc979d3418f49d66bda
+size 618
diff --git a/models/keyword_spotting/cnn_large/tflite_int8/testing_output/Identity/0.npy b/models/keyword_spotting/cnn_large/tflite_int8/testing_output/Identity/0.npy
index 2af9fd0..37fcd87 100644
--- a/models/keyword_spotting/cnn_large/tflite_int8/testing_output/Identity/0.npy
+++ b/models/keyword_spotting/cnn_large/tflite_int8/testing_output/Identity/0.npy
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:263b365ec4a0059ec477dc4bcbfec16a49b7c2920641ed48efa201c848424cc4
-size 176
+oid sha256:bb6ae4cf97cee9fea31a725d8f61ae0ca3d1b7b5059bcede551f365f94f8feaf
+size 140
diff --git a/models/keyword_spotting/cnn_medium/tflite_int8/README.md b/models/keyword_spotting/cnn_medium/tflite_int8/README.md
index 0ccdf5c..5576d61 100644
--- a/models/keyword_spotting/cnn_medium/tflite_int8/README.md
+++ b/models/keyword_spotting/cnn_medium/tflite_int8/README.md
@@ -17,8 +17,8 @@ Code to recreate this model can be found here: https://github.com/ARM-software/M
| Network Information | Value |
|---------------------|------------------|
| Framework | TensorFlow Lite |
-| SHA-1 Hash | 389c6c2c7d289c0018e2dabcc66271811e52874c |
-| Size (Bytes) | 187840 |
+| SHA-1 Hash | 6bc68074d960bbb0c695e19fd96fd7903131ef60 |
+| Size (Bytes) | 186064 |
| Provenance | https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m |
| Paper | https://arxiv.org/abs/1711.07128 |
@@ -27,7 +27,7 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Accuracy | 0.913 |
+| Accuracy | 0.911 |
## Performance
| Platform | Optimized |
diff --git a/models/keyword_spotting/cnn_medium/tflite_int8/cnn_m_quantized.tflite b/models/keyword_spotting/cnn_medium/tflite_int8/cnn_m_quantized.tflite
index 41f7f29..8dc8432 100644
--- a/models/keyword_spotting/cnn_medium/tflite_int8/cnn_m_quantized.tflite
+++ b/models/keyword_spotting/cnn_medium/tflite_int8/cnn_m_quantized.tflite
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:c5b248c9bbd1d49e2887eb410853338838debd8465363aebf77ed66601f6d279
-size 187840
+oid sha256:ae3ddb36a6a397b4394122abf320f92754f148a432e9a6de12619e78d3d853c1
+size 186064
diff --git a/models/keyword_spotting/cnn_medium/tflite_int8/definition.yaml b/models/keyword_spotting/cnn_medium/tflite_int8/definition.yaml
index f5a4b0b..a7851bb 100644
--- a/models/keyword_spotting/cnn_medium/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/cnn_medium/tflite_int8/definition.yaml
@@ -1,19 +1,20 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 0.913
+ Accuracy: 91.08%
description: 'This is a fully quantized version (asymmetrical int8) of the CNN Medium
model developed by Arm, with training checkpoints, from the Hello Edge paper. Code
to recreate this model can be found here: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m'
license:
- Apache-2.0
network:
- file_size_bytes: 187840
+ file_size_bytes: 186064
filename: cnn_m_quantized.tflite
framework: TensorFlow Lite
hash:
algorithm: sha1
- value: 389c6c2c7d289c0018e2dabcc66271811e52874c
+ value: 6bc68074d960bbb0c695e19fd96fd7903131ef60
provenance: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m
+ quality_level: null
network_parameters:
input_nodes:
- description: The input is a processed MFCCs of shape (1, 490)
diff --git a/models/keyword_spotting/cnn_medium/tflite_int8/testing_input/input/0.npy b/models/keyword_spotting/cnn_medium/tflite_int8/testing_input/input/0.npy
index 019d597..1829684 100644
--- a/models/keyword_spotting/cnn_medium/tflite_int8/testing_input/input/0.npy
+++ b/models/keyword_spotting/cnn_medium/tflite_int8/testing_input/input/0.npy
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:e9e78e930e911e01c9de252a2ce4bd0a24d24b92df99360d22a8ce4aa0fa9374
-size 2088
+oid sha256:d2407c02e6ffdd0b88ee777cc692034d5f9202d1c130ce3e87405664bdd265ed
+size 618
diff --git a/models/keyword_spotting/cnn_medium/tflite_int8/testing_output/Identity/0.npy b/models/keyword_spotting/cnn_medium/tflite_int8/testing_output/Identity/0.npy
index 795344c..189245a 100644
--- a/models/keyword_spotting/cnn_medium/tflite_int8/testing_output/Identity/0.npy
+++ b/models/keyword_spotting/cnn_medium/tflite_int8/testing_output/Identity/0.npy
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:beb323ac65a632694dfa205a05db3113136dc4dcc0df88286501dbddf9349826
-size 176
+oid sha256:4e8c7209482ecdeacdd3274b87f79b6026a6d14e885c81f943cb2934c4b81861
+size 140
diff --git a/models/keyword_spotting/cnn_small/tflite_int8/README.md b/models/keyword_spotting/cnn_small/tflite_int8/README.md
index 1a8098b..54e42bd 100644
--- a/models/keyword_spotting/cnn_small/tflite_int8/README.md
+++ b/models/keyword_spotting/cnn_small/tflite_int8/README.md
@@ -17,8 +17,8 @@ Code to recreate this model can be found here: https://github.com/ARM-software/M
| Network Information | Value |
|---------------------|------------------|
| Framework | TensorFlow Lite |
-| SHA-1 Hash | d3c8f4b468545d7012383f2a312bef6245a3b599 |
-| Size (Bytes) | 76752 |
+| SHA-1 Hash | 3415f88dfb8f78fe47d282d68ccbc3ce71a7510f |
+| Size (Bytes) | 75400 |
| Provenance | https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m |
| Paper | https://arxiv.org/abs/1711.07128 |
@@ -27,7 +27,7 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Accuracy | 0.914 |
+| Accuracy | 0.912 |
## Performance
| Platform | Optimized |
diff --git a/models/keyword_spotting/cnn_small/tflite_int8/cnn_s_quantized.tflite b/models/keyword_spotting/cnn_small/tflite_int8/cnn_s_quantized.tflite
index 2710880..b0c4bce 100644
--- a/models/keyword_spotting/cnn_small/tflite_int8/cnn_s_quantized.tflite
+++ b/models/keyword_spotting/cnn_small/tflite_int8/cnn_s_quantized.tflite
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:e27f84423ba1d274d266dc0b73f052258c4140935d7eec6b2190d2a7b91a9b99
-size 76752
+oid sha256:32d791ecf6e111af33f512f694319e22826829a566d6bd3ffc431028a6d88d4d
+size 75400
diff --git a/models/keyword_spotting/cnn_small/tflite_int8/definition.yaml b/models/keyword_spotting/cnn_small/tflite_int8/definition.yaml
index bf73a6a..e5cd3c4 100644
--- a/models/keyword_spotting/cnn_small/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/cnn_small/tflite_int8/definition.yaml
@@ -1,19 +1,20 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 0.914
+ Accuracy: 91.23%
description: 'This is a fully quantized version (asymmetrical int8) of the CNN Small
model developed by Arm, with training checkpoints, from the Hello Edge paper. Code
to recreate this model can be found here: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m'
license:
- Apache-2.0
network:
- file_size_bytes: 76752
+ file_size_bytes: 75400
filename: cnn_s_quantized.tflite
framework: TensorFlow Lite
hash:
algorithm: sha1
- value: d3c8f4b468545d7012383f2a312bef6245a3b599
+ value: 3415f88dfb8f78fe47d282d68ccbc3ce71a7510f
provenance: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m
+ quality_level: null
network_parameters:
input_nodes:
- description: The input is a processed MFCCs of shape (1, 490)
diff --git a/models/keyword_spotting/cnn_small/tflite_int8/testing_input/input/0.npy b/models/keyword_spotting/cnn_small/tflite_int8/testing_input/input/0.npy
index a0427cd..8692dfa 100644
--- a/models/keyword_spotting/cnn_small/tflite_int8/testing_input/input/0.npy
+++ b/models/keyword_spotting/cnn_small/tflite_int8/testing_input/input/0.npy
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:6ab93d482c05ce53fd467f419d67653351c0b6a6d4466484a904183c967d7615
-size 2088
+oid sha256:3510110d5273f58a1239c3eadd8d3dd65886c4848ab80b9ba51e53560549b2ce
+size 618
diff --git a/models/keyword_spotting/cnn_small/tflite_int8/testing_output/Identity/0.npy b/models/keyword_spotting/cnn_small/tflite_int8/testing_output/Identity/0.npy
index 32e9c6a..1fc6b4a 100644
--- a/models/keyword_spotting/cnn_small/tflite_int8/testing_output/Identity/0.npy
+++ b/models/keyword_spotting/cnn_small/tflite_int8/testing_output/Identity/0.npy
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:a3c45c91b844320f45454118d9959f0a84c6ab3702249a65d27a65eaccb94364
-size 176
+oid sha256:f4a899b1260ff7b659d0296f31dd237311db19c3f85606fd37bd0c0bc76a9851
+size 140
diff --git a/models/keyword_spotting/dnn_large/tflite_int8/README.md b/models/keyword_spotting/dnn_large/tflite_int8/README.md
index a65b295..40a0507 100644
--- a/models/keyword_spotting/dnn_large/tflite_int8/README.md
+++ b/models/keyword_spotting/dnn_large/tflite_int8/README.md
@@ -17,8 +17,8 @@ Code to recreate this model can be found here: https://github.com/ARM-software/M
| Network Information | Value |
|---------------------|------------------|
| Framework | TensorFlow Lite |
-| SHA-1 Hash | 16e03dda20ae81dfba6a567e6e7563ca67596969 |
-| Size (Bytes) | 502928 |
+| SHA-1 Hash | 2b1ee34e4c87ba6f24092c7457593227099efaf1 |
+| Size (Bytes) | 502272 |
| Provenance | https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m |
| Paper | https://arxiv.org/abs/1711.07128 |
diff --git a/models/keyword_spotting/dnn_large/tflite_int8/definition.yaml b/models/keyword_spotting/dnn_large/tflite_int8/definition.yaml
index 7731163..68c8968 100644
--- a/models/keyword_spotting/dnn_large/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/dnn_large/tflite_int8/definition.yaml
@@ -1,19 +1,20 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 0.863
+ Accuracy: 86.26%
description: 'This is a fully quantized version (asymmetrical int8) of the DNN Large
model developed by Arm, with training checkpoints, from the Hello Edge paper. Code
to recreate this model can be found here: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m'
license:
- Apache-2.0
network:
- file_size_bytes: 502928
+ file_size_bytes: 502272
filename: dnn_l_quantized.tflite
framework: TensorFlow Lite
hash:
algorithm: sha1
- value: 16e03dda20ae81dfba6a567e6e7563ca67596969
+ value: 2b1ee34e4c87ba6f24092c7457593227099efaf1
provenance: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m
+ quality_level: null
network_parameters:
input_nodes:
- description: The input is a processed MFCCs of shape (1, 250)
diff --git a/models/keyword_spotting/dnn_large/tflite_int8/dnn_l_quantized.tflite b/models/keyword_spotting/dnn_large/tflite_int8/dnn_l_quantized.tflite
index 115630b..fc04063 100644
--- a/models/keyword_spotting/dnn_large/tflite_int8/dnn_l_quantized.tflite
+++ b/models/keyword_spotting/dnn_large/tflite_int8/dnn_l_quantized.tflite
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:8ce8851a911a09f8e95e7b1b2d79b1be8789f6daf31822af608e3ed76c804449
-size 502928
+oid sha256:29f15ded3dec261ea33dacccbeceabe067c27e8928d68045d19ca03b7e926cd5
+size 502272
diff --git a/models/keyword_spotting/dnn_large/tflite_int8/testing_input/input/0.npy b/models/keyword_spotting/dnn_large/tflite_int8/testing_input/input/0.npy
index 630a2a0..558b8ff 100644
--- a/models/keyword_spotting/dnn_large/tflite_int8/testing_input/input/0.npy
+++ b/models/keyword_spotting/dnn_large/tflite_int8/testing_input/input/0.npy
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:64e49f31ae73b296444bf68f5353f378757caf49e7f49327a1045c0af69a596e
-size 1128
+oid sha256:9670b6cc8345843011e34a76fdd13d1cd73ddb79ffb7e9d71baec4b5a0171ffc
+size 378
diff --git a/models/keyword_spotting/dnn_large/tflite_int8/testing_output/Identity/0.npy b/models/keyword_spotting/dnn_large/tflite_int8/testing_output/Identity/0.npy
index 5f9cd13..6a5ef2f 100644
--- a/models/keyword_spotting/dnn_large/tflite_int8/testing_output/Identity/0.npy
+++ b/models/keyword_spotting/dnn_large/tflite_int8/testing_output/Identity/0.npy
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:5b9f8f953115b84e5e55a4aa80de50bb3c0438421d318dfcaf70a53bf9243f47
-size 176
+oid sha256:92495c30988ad2c068e958f2bd989292a3f9f0f48b5be0143343b442934f6739
+size 140
diff --git a/models/keyword_spotting/dnn_medium/tflite_int8/README.md b/models/keyword_spotting/dnn_medium/tflite_int8/README.md
index fcb6e2f..cfc52ce 100644
--- a/models/keyword_spotting/dnn_medium/tflite_int8/README.md
+++ b/models/keyword_spotting/dnn_medium/tflite_int8/README.md
@@ -17,8 +17,8 @@ Code to recreate this model can be found here: https://github.com/ARM-software/M
| Network Information | Value |
|---------------------|------------------|
| Framework | TensorFlow Lite |
-| SHA-1 Hash | 57ad3cf78f736819b8897f5de51f7e9a4cbd5689 |
-| Size (Bytes) | 204480 |
+| SHA-1 Hash | 7e138f99cfc6a603a1fc735a2d9c3e28a41a6a43 |
+| Size (Bytes) | 203832 |
| Provenance | https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m |
| Paper | https://arxiv.org/abs/1711.07128 |
@@ -27,7 +27,7 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Accuracy | 0.846 |
+| Accuracy | 0.844 |
## Performance
| Platform | Optimized |
diff --git a/models/keyword_spotting/dnn_medium/tflite_int8/definition.yaml b/models/keyword_spotting/dnn_medium/tflite_int8/definition.yaml
index b963bc7..abcfbd8 100644
--- a/models/keyword_spotting/dnn_medium/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/dnn_medium/tflite_int8/definition.yaml
@@ -1,19 +1,20 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 0.846
+ Accuracy: 84.44%
description: 'This is a fully quantized version (asymmetrical int8) of the DNN Medium
model developed by Arm, with training checkpoints, from the Hello Edge paper. Code
to recreate this model can be found here: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m'
license:
- Apache-2.0
network:
- file_size_bytes: 204480
+ file_size_bytes: 203832
filename: dnn_m_quantized.tflite
framework: TensorFlow Lite
hash:
algorithm: sha1
- value: 57ad3cf78f736819b8897f5de51f7e9a4cbd5689
+ value: 7e138f99cfc6a603a1fc735a2d9c3e28a41a6a43
provenance: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m
+ quality_level: null
network_parameters:
input_nodes:
- description: The input is a processed MFCCs of shape (1, 250)
diff --git a/models/keyword_spotting/dnn_medium/tflite_int8/dnn_m_quantized.tflite b/models/keyword_spotting/dnn_medium/tflite_int8/dnn_m_quantized.tflite
index 1b4ad83..2311850 100644
--- a/models/keyword_spotting/dnn_medium/tflite_int8/dnn_m_quantized.tflite
+++ b/models/keyword_spotting/dnn_medium/tflite_int8/dnn_m_quantized.tflite
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:583870dc8e2b71c43e7df6af31b875e18f6484b7f8812e4cec000828194d3505
-size 204480
+oid sha256:8aaea8c3a4b802843ff2fc8d9f9c16d186ce6529703675d8794d84caf4e8abcd
+size 203832
diff --git a/models/keyword_spotting/dnn_medium/tflite_int8/testing_input/input/0.npy b/models/keyword_spotting/dnn_medium/tflite_int8/testing_input/input/0.npy
index fc83aae..32c8c54 100644
--- a/models/keyword_spotting/dnn_medium/tflite_int8/testing_input/input/0.npy
+++ b/models/keyword_spotting/dnn_medium/tflite_int8/testing_input/input/0.npy
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:4726af0ac4260b864bc7944f5c661fabec3094bea9cfb66bf5dcebeb3afa2ddb
-size 1128
+oid sha256:6607af3640b3097367eda7f9cbb646f72024b7b5e8b0de3b5fe7575798b6ba24
+size 378
diff --git a/models/keyword_spotting/dnn_medium/tflite_int8/testing_output/Identity/0.npy b/models/keyword_spotting/dnn_medium/tflite_int8/testing_output/Identity/0.npy
index f45738a..aba943b 100644
--- a/models/keyword_spotting/dnn_medium/tflite_int8/testing_output/Identity/0.npy
+++ b/models/keyword_spotting/dnn_medium/tflite_int8/testing_output/Identity/0.npy
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:5e7d8de3bfebb95e1299a8f900b3f07b6d0976876dee94803917de2f3116cbeb
-size 176
+oid sha256:e3cdb0a6b839fb696d5c3f7ef54d106848188c1e2952b810e93b26c9bbb9c845
+size 140
diff --git a/models/keyword_spotting/dnn_small/tflite_int8/README.md b/models/keyword_spotting/dnn_small/tflite_int8/README.md
index 6ff5897..1f5d3f8 100644
--- a/models/keyword_spotting/dnn_small/tflite_int8/README.md
+++ b/models/keyword_spotting/dnn_small/tflite_int8/README.md
@@ -17,8 +17,8 @@ Code to recreate this model can be found here: https://github.com/ARM-software/M
| Network Information | Value |
|---------------------|------------------|
| Framework | TensorFlow Lite |
-| SHA-1 Hash | 5b00a7eb54eb2650c50026ddef2b3134a71ab6cf |
-| Size (Bytes) | 84192 |
+| SHA-1 Hash | 4b92e09fb43b2f042ce2811b91c7c67bf7186b6b |
+| Size (Bytes) | 83544 |
| Provenance | https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m |
| Paper | https://arxiv.org/abs/1711.07128 |
@@ -27,7 +27,7 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Accuracy | 0.827 |
+| Accuracy | 0.825 |
## Performance
| Platform | Optimized |
diff --git a/models/keyword_spotting/dnn_small/tflite_int8/definition.yaml b/models/keyword_spotting/dnn_small/tflite_int8/definition.yaml
index 891a321..7f66d4d 100644
--- a/models/keyword_spotting/dnn_small/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/dnn_small/tflite_int8/definition.yaml
@@ -1,19 +1,20 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 0.827
+ Accuracy: 82.45%
description: 'This is a fully quantized version (asymmetrical int8) of the DNN Small
model developed by Arm, with training checkpoints, from the Hello Edge paper. Code
to recreate this model can be found here: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m'
license:
- Apache-2.0
network:
- file_size_bytes: 84192
+ file_size_bytes: 83544
filename: dnn_s_quantized.tflite
framework: TensorFlow Lite
hash:
algorithm: sha1
- value: 5b00a7eb54eb2650c50026ddef2b3134a71ab6cf
+ value: 4b92e09fb43b2f042ce2811b91c7c67bf7186b6b
provenance: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m
+ quality_level: null
network_parameters:
input_nodes:
- description: The input is a processed MFCCs of shape (1, 250)
diff --git a/models/keyword_spotting/dnn_small/tflite_int8/dnn_s_quantized.tflite b/models/keyword_spotting/dnn_small/tflite_int8/dnn_s_quantized.tflite
index 81c327c..85bcbac 100644
--- a/models/keyword_spotting/dnn_small/tflite_int8/dnn_s_quantized.tflite
+++ b/models/keyword_spotting/dnn_small/tflite_int8/dnn_s_quantized.tflite
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:b34dea022996706a558f14fbc967631889cbc82b93f25d326c581763aed71f0b
-size 84192
+oid sha256:cbc9be800da22587766862cb99aaed59649d0b0f1d0cc279a24b55c7171211e9
+size 83544
diff --git a/models/keyword_spotting/dnn_small/tflite_int8/testing_input/input/0.npy b/models/keyword_spotting/dnn_small/tflite_int8/testing_input/input/0.npy
index d5347dc..9271c80 100644
--- a/models/keyword_spotting/dnn_small/tflite_int8/testing_input/input/0.npy
+++ b/models/keyword_spotting/dnn_small/tflite_int8/testing_input/input/0.npy
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:2851c7ed0ba56e11c91105ee16066e36af37720a9d05b21322acdb75305a1138
-size 1128
+oid sha256:055674ef4e60069da8282a22e4b71336ff8e365703a3076496eec624405f96fa
+size 378
diff --git a/models/keyword_spotting/dnn_small/tflite_int8/testing_output/Identity/0.npy b/models/keyword_spotting/dnn_small/tflite_int8/testing_output/Identity/0.npy
index 1c48b7e..47facf9 100644
--- a/models/keyword_spotting/dnn_small/tflite_int8/testing_output/Identity/0.npy
+++ b/models/keyword_spotting/dnn_small/tflite_int8/testing_output/Identity/0.npy
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:654de06c1bd3726bd4be282b1721cd2bd80e7f83cdee401d50993f30621f855a
-size 176
+oid sha256:c086137c23cf9f18b29ffa5f1e868c282ddd7ae733be37de1527e6f77ba3695c
+size 140
diff --git a/models/keyword_spotting/ds_cnn_large/tflite_int8/definition.yaml b/models/keyword_spotting/ds_cnn_large/tflite_int8/definition.yaml
index a4d46f1..54df622 100644
--- a/models/keyword_spotting/ds_cnn_large/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/ds_cnn_large/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 0.946
+ Accuracy: 94.58%
description: 'This is a fully quantized version (asymmetrical int8) of the DS-CNN
Large model developed by Arm, with training checkpoints, from the Hello Edge paper.
Code to recreate this model can be found here: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m'
@@ -14,6 +14,7 @@ network:
algorithm: sha1
value: 504f8e7bfa5c0f15c5475e5d08637b3b8aad0972
provenance: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m
+ quality_level: hero#CORTEX-M
network_parameters:
input_nodes:
- description: The input is a processed MFCCs of shape (1, 490)
diff --git a/models/keyword_spotting/ds_cnn_medium/tflite_int8/README.md b/models/keyword_spotting/ds_cnn_medium/tflite_int8/README.md
index ac6b906..c675a6f 100644
--- a/models/keyword_spotting/ds_cnn_medium/tflite_int8/README.md
+++ b/models/keyword_spotting/ds_cnn_medium/tflite_int8/README.md
@@ -17,8 +17,8 @@ Code to recreate this model can be found here: https://github.com/ARM-software/M
| Network Information | Value |
|---------------------|------------------|
| Framework | TensorFlow Lite |
-| SHA-1 Hash | c6923b02806224775b58ab9bc11e03e021ff407e |
-| Size (Bytes) | 200928 |
+| SHA-1 Hash | 740d32adde16948b2ab45e1e8c856de2925a05eb |
+| Size (Bytes) | 186288 |
| Provenance | https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m |
| Paper | https://arxiv.org/abs/1711.07128 |
@@ -27,7 +27,7 @@ Dataset: Google Speech Commands Test Set
| Metric | Value |
|--------|-------|
-| Accuracy | 0.934 |
+| Accuracy | 0.941 |
## Performance
| Platform | Optimized |
diff --git a/models/keyword_spotting/ds_cnn_medium/tflite_int8/definition.yaml b/models/keyword_spotting/ds_cnn_medium/tflite_int8/definition.yaml
index 461756b..c77867c 100644
--- a/models/keyword_spotting/ds_cnn_medium/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/ds_cnn_medium/tflite_int8/definition.yaml
@@ -1,19 +1,20 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 0.934
+ Accuracy: 94.13%
description: 'This is a fully quantized version (asymmetrical int8) of the DS-CNN
Medium model developed by Arm, with training checkpoints, from the Hello Edge paper.
Code to recreate this model can be found here: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m'
license:
- Apache-2.0
network:
- file_size_bytes: 200928
+ file_size_bytes: 186288
filename: ds_cnn_m_quantized.tflite
framework: TensorFlow Lite
hash:
algorithm: sha1
- value: c6923b02806224775b58ab9bc11e03e021ff407e
+ value: 740d32adde16948b2ab45e1e8c856de2925a05eb
provenance: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m
+ quality_level: hero#CORTEX-M
network_parameters:
input_nodes:
- description: The input is a processed MFCCs of shape (1, 490)
diff --git a/models/keyword_spotting/ds_cnn_medium/tflite_int8/ds_cnn_m_quantized.tflite b/models/keyword_spotting/ds_cnn_medium/tflite_int8/ds_cnn_m_quantized.tflite
index 51b48e1..e78eda4 100644
--- a/models/keyword_spotting/ds_cnn_medium/tflite_int8/ds_cnn_m_quantized.tflite
+++ b/models/keyword_spotting/ds_cnn_medium/tflite_int8/ds_cnn_m_quantized.tflite
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:06a081f9a2a43c3a4a41833c54618af6d085a661bdd78a7768e6a8ab343b3d98
-size 200928
+oid sha256:b18433ec283fa9a70e9ecdfc9ec8c1083772d6ecdf99386120277d7c3f805b34
+size 186288
diff --git a/models/keyword_spotting/ds_cnn_medium/tflite_int8/testing_input/input/0.npy b/models/keyword_spotting/ds_cnn_medium/tflite_int8/testing_input/input/0.npy
index 9969bf8..0b2b4dd 100644
--- a/models/keyword_spotting/ds_cnn_medium/tflite_int8/testing_input/input/0.npy
+++ b/models/keyword_spotting/ds_cnn_medium/tflite_int8/testing_input/input/0.npy
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:154389ea283a2c2b2c5f02eb249cb2c4a857b41755c21b27587913642fe12e44
-size 2088
+oid sha256:991d3cce2ffe40ea80f9d0ad255d3e2107fceba29f997b9fb45a85f63fbe8464
+size 618
diff --git a/models/keyword_spotting/ds_cnn_medium/tflite_int8/testing_output/Identity/0.npy b/models/keyword_spotting/ds_cnn_medium/tflite_int8/testing_output/Identity/0.npy
index 8d6d596..47facf9 100644
--- a/models/keyword_spotting/ds_cnn_medium/tflite_int8/testing_output/Identity/0.npy
+++ b/models/keyword_spotting/ds_cnn_medium/tflite_int8/testing_output/Identity/0.npy
@@ -1,3 +1,3 @@
version https://git-lfs.github.com/spec/v1
-oid sha256:b17bd272743503adc3969f72ac73046a876b5987b8ff1a1916d2dfbdee89681a
-size 176
+oid sha256:c086137c23cf9f18b29ffa5f1e868c282ddd7ae733be37de1527e6f77ba3695c
+size 140
diff --git a/models/keyword_spotting/ds_cnn_small/tflite_int8/definition.yaml b/models/keyword_spotting/ds_cnn_small/tflite_int8/definition.yaml
index 13bb8a2..5e507b4 100644
--- a/models/keyword_spotting/ds_cnn_small/tflite_int8/definition.yaml
+++ b/models/keyword_spotting/ds_cnn_small/tflite_int8/definition.yaml
@@ -1,6 +1,6 @@
benchmark:
Google Speech Commands test set:
- Accuracy: 0.935
+ Accuracy: 93.56%
description: 'This is a fully quantized version (asymmetrical int8) of the DS-CNN
Small model developed by Arm, with training checkpoints, from the Hello Edge paper.
Code to recreate this model can be found here: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m'
@@ -14,6 +14,7 @@ network:
algorithm: sha1
value: cf24429e86a9647b1632c382894bc68d26d34039
provenance: https://github.com/ARM-software/ML-examples/tree/master/tflu-kws-cortex-m
+ quality_level: hero#CORTEX-M
network_parameters:
input_nodes:
- description: The input is a processed MFCCs of shape (1, 490)