-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
233 lines (189 loc) · 9.3 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from transformers import Wav2Vec2FeatureExtractor
from transformers import RobertaTokenizer
import torch.nn as nn
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from dataclasses import dataclass
from typing import Dict, List, Optional, Union
import soundfile as sf
import numpy as np
from collections import Counter
from torch.utils.data import WeightedRandomSampler
import os
emos = ["hap", 'neu', 'sad', 'ang']
allemos = ["happy", 'neutral', 'sad', 'angry']
gens = ["F", "M"]
sess = ['session01', 'session02', 'session03', 'session04', 'session05']
emo2idx, idx2emo = {}, {}
idx2allemo = {}
for ii, emo in enumerate(allemos): idx2allemo[ii] = emo
for ii, emo in enumerate(emos): emo2idx[emo] = ii
for ii, emo in enumerate(emos): idx2emo[ii] = emo
gen2idx, idx2gen = {}, {}
for ii, gen in enumerate(gens): gen2idx[gen] = ii
for ii, gen in enumerate(gens): idx2gen[ii] = gen
idx2sess = {}
for ii, ses in enumerate(sess): idx2sess[str(ii+1)] = ses
def read_text(text_path):
f = open(text_path, "r")
lines = f.readlines()
f.close()
return lines
@dataclass
class MultiTaskDataCollator:
"""
Data collator that will dynamically pad the inputs received.
Args:
feature_extractor (:class:`~transformers.Wav2Vec2FeatureExtractor`)
The feature_extractor used for proccessing the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (:obj:`int`, `optional`):
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
max_length_labels (:obj:`int`, `optional`):
Maximum length of the ``labels`` returned list and optionally padding length (see above).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
feature_extractor: Wav2Vec2FeatureExtractor
padding: Union[bool, str] = True
max_length: Optional[int] = None
max_length_labels: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
pad_to_multiple_of_labels: Optional[int] = None
def __call__(self, features: List) -> Dict[str, torch.Tensor]:
input_features, emo_label, video_input, alen, vlen = [], [], [], [], []
sample_rate = self.feature_extractor.sampling_rate
batch = {}
for feature in features:
input_features.append(feature[0])
video_input.append(feature[1])
emo_label.append(feature[2])
alen.append(feature[3])
vlen.append(feature[4])
# batch = self.feature_extractor.pad(
# input_features,
# padding=self.padding,
# max_length=self.max_length * sample_rate,
# pad_to_multiple_of=self.pad_to_multiple_of,
# truncation=True,
# return_tensors="pt",
# )
d_type = torch.long if isinstance(emo_label[0], int) else torch.float32
batch['input_values'] = torch.stack(input_features, dim=0)
batch["emo_labels"] = torch.tensor(emo_label, dtype=d_type)
batch["vinput_values"] = torch.stack(video_input, dim=0)
vframe = torch.tensor(vlen).to(torch.long)
batch_size = len(vlen)
v_atten_mask = torch.zeros((batch_size, 180), dtype=torch.long)
v_atten_mask[(torch.arange(v_atten_mask.shape[0]), vframe - 1)] = 1
v_atten_mask = v_atten_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
batch['vattention_mask'] = v_atten_mask
vframe = torch.tensor(alen).to(torch.long)
attention_mask = torch.zeros((batch_size, 6*16000), dtype=torch.long)
attention_mask[(torch.arange(attention_mask.shape[0]), vframe - 1)] = 1
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1])
batch["attention_mask"] = attention_mask
return batch
class MultiTaskDataset(Dataset):
def __init__(self, src_path):
all_lines = read_text(src_path)
self.label = []
self.wav_list = []
self.visual_list = []
self.gen_label = []
self.spk_dict = {}
self.visual_path = "/home/lqf/workspace/PhD-project/dataset-process/clip-large/"
for line in all_lines:
tmp = line.strip().split("\n")[0].split()
# spk_info = tmp[1].split("/")[-1].split(".")[0].split("_")
name = tmp[1].split("/")[-1].split(".")[0]
vpath = os.path.join(self.visual_path, idx2sess[tmp[0][4]], name+".npy")
self.visual_list.append(vpath)
self.wav_list.append(tmp[1])
self.label.append(emo2idx[tmp[-1]])
def __getitem__(self, index):
wave, sr = sf.read(self.wav_list[index])
assert sr == 16000
a_len = 0
if len(wave) >= 6 * 16000:
wave = wave[:6*16000]
a_len = 6*16000
else:
a_len = len(wave)
num_len = 6*16000 - a_len
wave = np.pad(wave, ((0, num_len)), "constant")
vdata = np.load(self.visual_list[index])
#padding
v_len = 0
if len(vdata) >= 180:
vdata = vdata[:180]
v_len = 180
else:
v_len = len(vdata)
num_len = 180 - v_len
vdata = np.pad(vdata, ((0, num_len), (0, 0)), "constant")
lab = self.label[index]
return torch.FloatTensor(wave), torch.FloatTensor(vdata), lab, a_len, v_len
def __len__(self):
return len(self.label)
def class_weight_v(self):
labels = np.array(self.label)
class_weight = torch.tensor([1/x for x in np.bincount(labels)], dtype=torch.float32)
return class_weight
def class_weight_q(self):
class_weight = self.class_weight_v()
return class_weight / class_weight.sum()
def class_weight_k(self):
labels = np.array(self.label)
class_sample_count = np.unique(labels, return_counts=True)[1]
weight = 1. / class_sample_count
weight = weight.tolist()
samples_weight = torch.tensor([weight[t] for t in labels], dtype=torch.float32)
"""
class_sample_count = np.unique(labels, return_counts=True)[1]
class_sample_count = class_sample_count / len(label)
weight = 1 / class_sample_count
"""
return samples_weight
def class_weight(self):
self.emos = Counter(self.label)
self.emoset = [0,1,2,3]
weights = torch.tensor([self.emos[c] for c in self.emoset]).float()
weights = weights.sum() / weights
weights = weights / weights.sum()
return weights
def get_loaders(args, train_path, valid_path):
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/home/lqf/workspace/wavlm-multi/wavlm-large", return_attention_mask=True)
data_collator = MultiTaskDataCollator(feature_extractor=feature_extractor, padding=True, max_length=args.max_length, max_length_labels=32)
train_dataset = MultiTaskDataset(train_path)
class_weight = train_dataset.class_weight_k()
valid_dataset = MultiTaskDataset(valid_path)
# test_dataset = MERDataset(test_path)
sampler = WeightedRandomSampler(weights=class_weight, num_samples=train_dataset.__len__())
train_dataloader = DataLoader(train_dataset, shuffle=False, batch_size=args.batch_size, sampler=sampler, collate_fn=data_collator, num_workers=10)
valid_dataloader = DataLoader(valid_dataset, shuffle=False, batch_size=args.batch_size, collate_fn=data_collator, num_workers=10)
# test_dataloader = DataLoader(test_dataset, shuffle=False, batch_size=args.batch_size, collate_fn=data_collator)
return train_dataloader, valid_dataloader, class_weight
if __name__ == "__main__":
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/home/lqf/workspace/wavlm-multi/wavlm-large", return_attention_mask=True)
# tokenizer = RobertaTokenizer.from_pretrained('/home/lqf/workspace/roberta-base')
data_collator = MultiTaskDataCollator(feature_extractor=feature_extractor, padding=True, max_length=6)
train_dataset = MultiTaskDataset("/home/lqf/workspace/icassp2023/session1_test.scp")
class_weight = train_dataset.class_weight_k()
sampler = WeightedRandomSampler(weights=class_weight, num_samples=train_dataset.__len__())
train_dataloader = DataLoader(train_dataset, shuffle=False, batch_size=8, sampler=sampler, collate_fn=data_collator)
for batch in train_dataloader:
print(batch['attention_mask'])
pass