From f038dc3a52cfb24bb93eee02beeac815c61b9427 Mon Sep 17 00:00:00 2001 From: Ansgar Wehrhahn <31626864+AWehrhahn@users.noreply.github.com> Date: Tue, 22 Mar 2022 13:24:56 +0100 Subject: [PATCH] add tool to convert existing wavecal to PyReduce wavecal --- tools/pymultispec.py | 270 +++++++++++++++++++++++++ tools/wavecal_creator_from_existing.py | 106 ++++++++++ 2 files changed, 376 insertions(+) create mode 100644 tools/pymultispec.py create mode 100644 tools/wavecal_creator_from_existing.py diff --git a/tools/pymultispec.py b/tools/pymultispec.py new file mode 100644 index 00000000..b86f7e66 --- /dev/null +++ b/tools/pymultispec.py @@ -0,0 +1,270 @@ +# -*- coding: utf-8 -*- +"""readmultispec.py + +Read IRAF (echelle) spectrum in multispec format from a FITS file. +Can read most multispec formats including linear, log, cubic spline, +Chebyshev or Legendre dispersion spectra. + +Usage: retdict = readmultispec(fitsfile, reform=True) + +Inputs: + +fitfile Name of the FITS file +reform If true (the default), a single spectrum dimensioned + [4,1,NWAVE] is returned as flux[4,NWAVE]. If false, + it is returned as a 3-D array flux[4,1,NWAVE]. + +Returns a dictionary with these entries: +flux Array dimensioned [NCOMPONENTS,NORDERS,NWAVE] with the spectra. + If NORDERS=1, array is [NCOMPONENTS,NWAVE]; if NCOMPONENTS is also + unity, array is [NWAVE]. (This can be changed + using the reform keyword.) Commonly the first dimension + is 4 and indexes the spectrum, an alternate version of + the spectrum, the sky, and the error array. I have also + seen examples where NCOMPONENTS=2 (probably spectrum and + error). Generally I think you can rely on the first element + flux[0] to be the extracted spectrum. I don't know of + any foolproof way to figure out from the IRAF header what the + various components are. +wavelen Array dimensioned [NORDERS,NWAVE] with the wavelengths for + each order. +header The full FITS header from pyfits. +wavefields [NORDERS] List with the analytical wavelength + description (polynomial coefficients, etc.) extracted from + the header. This is probably not very useful but is + included just in case. + +History: +Created by Rick White based on my IDL readechelle.pro, 2012 August 15 +Apologies for any IDL-isms that remain! +""" + +import numpy as np +from astropy.io import fits as pyfits + + +def nonlinearwave(nwave, specstr, verbose=False): + """Compute non-linear wavelengths from multispec string + + Returns wavelength array and dispersion fields. + Raises a ValueError if it can't understand the dispersion string. + """ + + fields = specstr.split() + if int(fields[2]) != 2: + raise ValueError("Not nonlinear dispersion: dtype=" + fields[2]) + if len(fields) < 12: + raise ValueError("Bad spectrum format (only %d fields)" % len(fields)) + wt = float(fields[9]) + w0 = float(fields[10]) + ftype = int(fields[11]) + if ftype == 3: + + # cubic spline + + if len(fields) < 15: + raise ValueError("Bad spline format (only %d fields)" % len(fields)) + npieces = int(fields[12]) + pmin = float(fields[13]) + pmax = float(fields[14]) + if verbose: + print("Dispersion is order-%d cubic spline" % npieces) + if len(fields) != 15 + npieces + 3: + raise ValueError( + "Bad order-%d spline format (%d fields)" % (npieces, len(fields)) + ) + coeff = np.asarray(fields[15:], dtype=float) + # normalized x coordinates + s = (np.arange(nwave, dtype=float) + 1 - pmin) / (pmax - pmin) * npieces + j = s.astype(int).clip(0, npieces - 1) + a = (j + 1) - s + b = s - j + x0 = a ** 3 + x1 = 1 + 3 * a * (1 + a * b) + x2 = 1 + 3 * b * (1 + a * b) + x3 = b ** 3 + wave = coeff[j] * x0 + coeff[j + 1] * x1 + coeff[j + 2] * x2 + coeff[j + 3] * x3 + + elif ftype == 1 or ftype == 2: + + # chebyshev or legendre polynomial + # legendre not tested yet + + if len(fields) < 15: + raise ValueError("Bad polynomial format (only %d fields)" % len(fields)) + order = int(fields[12]) + pmin = float(fields[13]) + pmax = float(fields[14]) + if verbose: + if ftype == 1: + print("Dispersion is order-%d Chebyshev polynomial" % order) + else: + print("Dispersion is order-%d Legendre polynomial (NEEDS TEST)" % order) + if len(fields) != 15 + order: + # raise ValueError('Bad order-%d polynomial format (%d fields)' % (order, len(fields))) + if verbose: + print( + "Bad order-%d polynomial format (%d fields)" % (order, len(fields)) + ) + print("Changing order from %i to %i" % (order, len(fields) - 15)) + order = len(fields) - 15 + coeff = np.asarray(fields[15:], dtype=float) + # normalized x coordinates + pmiddle = (pmax + pmin) / 2 + prange = pmax - pmin + x = (np.arange(nwave, dtype=float) + 1 - pmiddle) / (prange / 2) + p0 = np.ones(nwave, dtype=float) + p1 = x + wave = p0 * coeff[0] + p1 * coeff[1] + for i in range(2, order): + if ftype == 1: + # chebyshev + p2 = 2 * x * p1 - p0 + else: + # legendre + p2 = ((2 * i - 1) * x * p1 - (i - 1) * p0) / i + wave = wave + p2 * coeff[i] + p0 = p1 + p1 = p2 + + else: + raise ValueError("Cannot handle dispersion function of type %d" % ftype) + + return wave, fields + + +def readmultispec(fitsfile, reform=True, quiet=False): + """Read IRAF echelle spectrum in multispec format from a FITS file + + Can read most multispec formats including linear, log, cubic spline, + Chebyshev or Legendre dispersion spectra + + If reform is true, a single spectrum dimensioned 4,1,NWAVE is returned + as 4,NWAVE (this is the default.) If reform is false, it is returned as + a 3-D array. + """ + + fh = pyfits.open(fitsfile) + try: + header = fh[0].header + flux = fh[0].data + finally: + fh.close() + temp = flux.shape + nwave = temp[-1] + if len(temp) == 1: + nspec = 1 + else: + nspec = temp[-2] + + # first try linear dispersion + try: + crval1 = header["crval1"] + crpix1 = header["crpix1"] + cd1_1 = header["cd1_1"] + ctype1 = header["ctype1"] + if ctype1.strip() == "LINEAR": + wavelen = np.zeros((nspec, nwave), dtype=float) + ww = (np.arange(nwave, dtype=float) + 1 - crpix1) * cd1_1 + crval1 + for i in range(nspec): + wavelen[i, :] = ww + # handle log spacing too + dcflag = header.get("dc-flag", 0) + if dcflag == 1: + wavelen = 10.0 ** wavelen + if not quiet: + print("Dispersion is linear in log wavelength") + elif dcflag == 0: + if not quiet: + print("Dispersion is linear") + else: + raise ValueError("Dispersion not linear or log (DC-FLAG=%s)" % dcflag) + + if nspec == 1 and reform: + # get rid of unity dimensions + flux = np.squeeze(flux) + wavelen.shape = (nwave,) + return { + "flux": flux, + "wavelen": wavelen, + "header": header, + "wavefields": None, + } + except KeyError: + pass + + # get wavelength parameters from multispec keywords + try: + wat2 = header["wat2_*"] + count = len(wat2) + except KeyError: + raise ValueError("Cannot decipher header, need either WAT2_ or CRVAL keywords") + + # concatenate them all together into one big string + watstr = [] + for i in range(len(wat2)): + # hack to fix the fact that older pyfits versions (< 3.1) + # strip trailing blanks from string values in an apparently + # irrecoverable way + # v = wat2[i].value + v = wat2[i] + v = v + (" " * (68 - len(v))) # restore trailing blanks + watstr.append(v) + watstr = "".join(watstr) + + # find all the spec#="..." strings + specstr = [""] * nspec + for i in range(nspec): + sname = "spec" + str(i + 1) + p1 = watstr.find(sname) + p2 = watstr.find('"', p1) + p3 = watstr.find('"', p2 + 1) + if p1 < 0 or p1 < 0 or p3 < 0: + raise ValueError("Cannot find " + sname + " in WAT2_* keyword") + specstr[i] = watstr[p2 + 1 : p3] + + wparms = np.zeros((nspec, 9), dtype=float) + w1 = np.zeros(9, dtype=float) + for i in range(nspec): + w1 = np.asarray(specstr[i].split(), dtype=float) + wparms[i, :] = w1[:9] + if w1[2] == -1: + raise ValueError( + "Spectrum %d has no wavelength calibration (type=%d)" % (i + 1, w1[2]) + ) + # elif w1[6] != 0: + # raise ValueError('Spectrum %d has non-zero redshift (z=%f)' % (i+1,w1[6])) + + wavelen = np.zeros((nspec, nwave), dtype=float) + wavefields = [None] * nspec + for i in range(nspec): + # if i in skipped_orders: + # continue + verbose = (not quiet) and (i == 0) + if wparms[i, 2] == 0 or wparms[i, 2] == 1: + # simple linear or log spacing + wavelen[i, :] = np.arange(nwave, dtype=float) * wparms[i, 4] + wparms[i, 3] + if wparms[i, 2] == 1: + wavelen[i, :] = 10.0 ** wavelen[i, :] + if verbose: + print("Dispersion is linear in log wavelength") + elif verbose: + print("Dispersion is linear") + else: + # non-linear wavelengths + wavelen[i, :], wavefields[i] = nonlinearwave( + nwave, specstr[i], verbose=verbose + ) + wavelen *= 1.0 + wparms[i, 6] + if verbose: + print("Correcting for redshift: z=%f" % wparms[i, 6]) + if nspec == 1 and reform: + # get rid of unity dimensions + flux = np.squeeze(flux) + wavelen.shape = (nwave,) + return { + "flux": flux, + "wavelen": wavelen, + "header": header, + "wavefields": wavefields, + } diff --git a/tools/wavecal_creator_from_existing.py b/tools/wavecal_creator_from_existing.py new file mode 100644 index 00000000..aa9cc16e --- /dev/null +++ b/tools/wavecal_creator_from_existing.py @@ -0,0 +1,106 @@ +# -*- coding: utf-8 -*- +""" +This script creates a new linelist file based on an existing wavelength solution and an atlas for a specific element of the gas lamp +used in the wavelength calibration. +""" + +from os.path import dirname, join + +import matplotlib.pyplot as plt +import numpy as np +from pymultispec import readmultispec + +from pyreduce.configuration import get_configuration_for_instrument +from pyreduce.instruments import instrument_info +from pyreduce.wavelength_calibration import LineAtlas, LineList, WavelengthCalibration + +# Load Existing wavelength solution and ThAr file +# Here from IRAF +fname = join(dirname(__file__), "wef10006.ec.fits") +spec = readmultispec(fname) +wave = spec["wavelen"] +flux = np.nansum(spec["flux"], axis=0) +nord, ncol = flux.shape + +# Load the lineatlas for the used element +# Here we use ThAr in vaccuum +atlas = LineAtlas("thar", "vac") + +# Fill the linelist with the expected values +linelist = { + "wlc": [], + "wll": [], + "posc": [], + "posm": [], + "xfirst": [], + "xlast": [], + "approx": [], + "width": [], + "height": [], + "order": [], + "flag": [], +} +# Adjust this threshold to what makes sense in your spectra +# it is used to differentiate between background and line +threshold = 1000 + +for i in range(nord): + wmin, wmax = wave[i].min(), wave[i].max() + # Find only useful lines + idx_list = (atlas.linelist.wave > wmin) & (atlas.linelist.wave < wmax) + height = np.interp(atlas.linelist[idx_list].wave, wave[i], flux[i]) + idx_list[idx_list] &= height > threshold + nlines = np.sum(idx_list) + + linelist["wlc"] += [atlas.linelist[idx_list].wave] + linelist["wll"] += [atlas.linelist[idx_list].wave] + linelist["posc"] += [ + np.interp(atlas.linelist[idx_list].wave, wave[i], np.linspace(0, ncol, ncol)) + ] + linelist["posm"] += [ + np.interp(atlas.linelist[idx_list].wave, wave[i], np.linspace(0, ncol, ncol)) + ] + linelist["xfirst"] += [np.clip(linelist["posc"][-1] - 5, 0, ncol).astype(int)] + linelist["xlast"] += [np.clip(linelist["posc"][-1] + 5, 0, ncol).astype(int)] + linelist["approx"] += [np.full(nlines, "G")] + linelist["width"] += [np.full(nlines, 1, float)] + linelist["height"] += [ + np.interp(atlas.linelist[idx_list].wave, wave[i], flux[i] / np.nanmax(flux[i])) + ] + linelist["order"] += [np.full(nlines, i)] + linelist["flag"] += [np.full(nlines, True)] + +# Combine the data from the different orders +linelist = {k: np.concatenate(v) for k, v in linelist.items()} +linelist = np.rec.fromarrays( + list(linelist.values()), names=list(linelist.keys()), dtype=LineList.dtype +) + +# Run the lines through the wavecal +# This updates the linelist inplace and flags bad ones +# You need to check if this is a good solution +# And update the settings in the config file accordingly +# here: pyreduce/settings/settings_MCDONALD.json +# or after the +# config = get_configuration_for_instrument(instrument, plot=1) +# line in your script + +# Setup the wavelength calibration module of PyReduce +instrument = instrument_info.load_instrument("MCDONALD") +module = WavelengthCalibration( + plot=1, + manual=True, + degree=8, + threshold=500, + iterations=3, + dimensionality="1D", + nstep=0, + shift_window=0.1, + element="thar", + medium="vac", +) +result = module.execute(flux, linelist) + +# Save the linelist +linelist = LineList(linelist) +linelist.save("mcdonald.npz")