-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualizer.py
194 lines (150 loc) · 5.86 KB
/
visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from __future__ import print_function
import copy
import warnings
import graphviz
import matplotlib.pyplot as plt
import numpy as np
def plot_stats(statistics, ylog=False, view=False, filename='avg_fitness.png'):
""" Plots the population's average and best fitness. """
if plt is None:
warnings.warn("This display is not available due to a missing optional dependency (matplotlib)")
return
generation = range(len(statistics.most_fit_genomes))
best_fitness = [c.fitness for c in statistics.most_fit_genomes]
avg_fitness = np.array(statistics.get_fitness_mean())
stdev_fitness = np.array(statistics.get_fitness_stdev())
plt.plot(generation, avg_fitness, 'b-', label="average")
plt.plot(generation, avg_fitness - stdev_fitness, 'g-.', label="-1 sd")
plt.plot(generation, avg_fitness + stdev_fitness, 'g-.', label="+1 sd")
plt.plot(generation, best_fitness, 'r-', label="best")
plt.title("Population's average and best fitness")
plt.xlabel("Generations")
plt.ylabel("Fitness")
plt.grid()
plt.legend(loc="best")
if ylog:
plt.gca().set_yscale('symlog')
plt.savefig(filename)
if view:
plt.show()
plt.close()
def plot_spikes(spikes, view=False, filename=None, title=None):
""" Plots the trains for a single spiking neuron. """
t_values = [t for t, I, v, u, f in spikes]
v_values = [v for t, I, v, u, f in spikes]
u_values = [u for t, I, v, u, f in spikes]
I_values = [I for t, I, v, u, f in spikes]
f_values = [f for t, I, v, u, f in spikes]
fig = plt.figure()
plt.subplot(4, 1, 1)
plt.ylabel("Potential (mv)")
plt.xlabel("Time (in ms)")
plt.grid()
plt.plot(t_values, v_values, "g-")
if title is None:
plt.title("Izhikevich's spiking neuron model")
else:
plt.title("Izhikevich's spiking neuron model ({0!s})".format(title))
plt.subplot(4, 1, 2)
plt.ylabel("Fired")
plt.xlabel("Time (in ms)")
plt.grid()
plt.plot(t_values, f_values, "r-")
plt.subplot(4, 1, 3)
plt.ylabel("Recovery (u)")
plt.xlabel("Time (in ms)")
plt.grid()
plt.plot(t_values, u_values, "r-")
plt.subplot(4, 1, 4)
plt.ylabel("Current (I)")
plt.xlabel("Time (in ms)")
plt.grid()
plt.plot(t_values, I_values, "r-o")
if filename is not None:
plt.savefig(filename)
if view:
plt.show()
plt.close()
fig = None
return fig
def plot_species(statistics, view=False, filename='speciation.png'):
""" Visualizes speciation throughout evolution. """
if plt is None:
warnings.warn("This display is not available due to a missing optional dependency (matplotlib)")
return
species_sizes = statistics.get_species_sizes()
num_generations = len(species_sizes)
curves = np.array(species_sizes).T
fig, ax = plt.subplots()
ax.stackplot(range(num_generations), *curves)
plt.title("Speciation")
plt.ylabel("Size per Species")
plt.xlabel("Generations")
plt.savefig(filename)
if view:
plt.show()
plt.close()
def draw_net(config, genome, view=False, filename=None, node_names=None, show_disabled=True, prune_unused=False,
node_colors=None, fmt='svg'):
""" Receives a genome and draws a neural network with arbitrary topology. """
# Attributes for network nodes.
if graphviz is None:
warnings.warn("This display is not available due to a missing optional dependency (graphviz)")
return
if node_names is None:
node_names = {}
assert type(node_names) is dict
if node_colors is None:
node_colors = {}
assert type(node_colors) is dict
node_attrs = {
'shape': 'circle',
'fontsize': '9',
'height': '0.2',
'width': '0.2'}
dot = graphviz.Digraph(format=fmt, node_attr=node_attrs)
inputs = set()
for k in config.genome_config.input_keys:
inputs.add(k)
name = node_names.get(k, str(k))
input_attrs = {'style': 'filled', 'shape': 'box', 'fillcolor': node_colors.get(k, 'lightgray')}
dot.node(name, _attributes=input_attrs)
outputs = set()
for k in config.genome_config.output_keys:
outputs.add(k)
name = node_names.get(k, str(k))
node_attrs = {'style': 'filled', 'fillcolor': node_colors.get(k, 'lightblue')}
dot.node(name, _attributes=node_attrs)
if prune_unused:
connections = set()
for cg in genome.connections.values():
if cg.enabled or show_disabled:
connections.add((cg.in_node_id, cg.out_node_id))
used_nodes = copy.copy(outputs)
pending = copy.copy(outputs)
while pending:
new_pending = set()
for a, b in connections:
if b in pending and a not in used_nodes:
new_pending.add(a)
used_nodes.add(a)
pending = new_pending
else:
used_nodes = set(genome.nodes.keys())
for n in used_nodes:
if n in inputs or n in outputs:
continue
attrs = {'style': 'filled',
'fillcolor': node_colors.get(n, 'white')}
dot.node(str(n), _attributes=attrs)
for cg in genome.connections.values():
if cg.enabled or show_disabled:
input, output = cg.key
a = node_names.get(input, str(input))
b = node_names.get(output, str(output))
style = 'solid' if cg.enabled else 'dotted'
color = 'green' if cg.weight > 0 else 'red'
width = str(0.1 + abs(cg.weight / 5.0))
dot.edge(a, b, _attributes={'style': style, 'color': color, 'penwidth': width})
dot.render(filename, view=view)
return dot