forked from nyunAI/nyuntam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
commands.py
174 lines (134 loc) · 4.91 KB
/
commands.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from nyuntam.settings import ROOT
from nyuntam.utils.config import load_config, dump_config
from nyuntam.constants.keys import FactoryArgumentKeys, JobServices
# nyuntam_adapt
from dataclasses import dataclass, field, asdict
from abc import ABC, abstractmethod
from typing import List, Dict, Union, Optional
import os
from argparse import Namespace, ArgumentParser
@dataclass
class Command(ABC):
name: str = field(default="", init=False)
arguments: List[Union[str, "Command"]] = field(default_factory=list)
flags: Dict = field(default_factory=dict)
_command: Optional[str] = None
def build_command(self):
command = f"{self.name}"
for key, value in self.flags.items():
if value is not None:
command += f" --{key}={value}"
for arg in self.arguments:
if isinstance(arg, Command):
command += f" {arg.get_command_as_subcommand()}"
else:
command += f" {arg}"
return command
@property
def command(self):
if self._command is None:
self._command = self.build_command()
return self._command
def reset_command(self):
self._command = None
def reset_name(self):
self.name = ""
self.reset_command()
def run(self):
if os.system(self.command) != 0:
raise ValueError(f"Failed to run command: {self.command}")
@abstractmethod
def get_command_as_subcommand(self):
pass
@dataclass
class NyunRun(Command):
name = f"python {str(ROOT / 'main.py')}"
@classmethod
def from_namespace(cls, args: Namespace):
return cls(flags=vars(args))
def get_command_as_subcommand(self):
return self.command.replace("python", "").strip()
@dataclass
class NyunRunTorch(Command):
name = "torchrun"
flags = {"nnodes": 1, "nproc-per-node": 1}
@classmethod
def from_args(
cls,
args: Namespace,
num_gpu: Optional[int] = None,
num_nodes: Optional[int] = None,
):
nyun_run = NyunRun.from_namespace(args)
num_nodes = num_nodes if num_nodes != None else cls.flags["nnodes"]
num_gpu = num_gpu if num_gpu != None else cls.flags["nproc-per-node"]
cls.flags.update({"nnodes": num_nodes, "nproc-per-node": num_gpu})
return cls(arguments=[nyun_run], flags=cls.flags)
def get_command_as_subcommand(self):
return self.command
@dataclass
class NyunRunAccelerate(Command):
name = "accelerate launch"
flags = {"config_file": None}
@classmethod
def from_namespace(cls, args: Namespace):
from nyuntam_adapt.utils import AdaptParams, create_instance
nyun_run = NyunRun.from_namespace(args)
config = load_config(args.yaml_path or args.json_path)
adapt_params = create_instance(AdaptParams, config)
accelerate_config_path = dump_config(
asdict(adapt_params.fsdp_args), ROOT / "accelerate_config.yaml"
)
accelerate_config_path = str(accelerate_config_path)
del adapt_params
del config
return cls(
arguments=[nyun_run],
flags={"config_file": accelerate_config_path},
)
def get_command_as_subcommand(self):
return self.command
def get_args():
parser = ArgumentParser()
parser.add_argument(
"--yaml_path", type=str, help="Path to config (.yaml file)", default=None
)
parser.add_argument(
"--json_path", type=str, help="Path to config (.json file)", default=None
)
args = parser.parse_args()
assert (
args.yaml_path is not None or args.json_path is not None
), f"No config file provided. Please specify either a YAML or JSON file."
return args
def run():
args = get_args()
runner = NyunRun.from_namespace(args)
runner.run()
def run_dist():
args = get_args()
config = load_config(args.yaml_path or args.json_path)
job_service = JobServices.get_service(
config.get(FactoryArgumentKeys.JOB_SERVICE, JobServices.KOMPRESS)
)
if job_service == JobServices.ADAPT:
from nyuntam_adapt.utils import AdaptParams, create_instance
adapt_params = create_instance(AdaptParams, config)
if adapt_params.DDP:
num_gpu = len(adapt_params.cuda_id.split(","))
runner = NyunRunTorch.from_args(args, num_gpu, adapt_params.num_nodes)
elif adapt_params.FSDP:
runner = NyunRunAccelerate.from_namespace(args)
else:
runner = NyunRun.from_namespace(args)
del adapt_params
elif job_service == JobServices.KOMPRESS:
if config.get(FactoryArgumentKeys.ALGORITHM == "AQLM"):
# Currently nnodes=1 for KOMPRESS
num_gpu = len(config.get("CUDA_ID").split(","))
runner = NyunRunTorch.from_args(args, num_gpu, 1)
else:
runner = NyunRun.from_namespace(args)
del config
del job_service
runner.run()