-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp_svm.py
33 lines (24 loc) · 904 Bytes
/
app_svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import numpy as np
from flask import Flask, request, jsonify, render_template
import pickle
import pandas as pd
app = Flask(__name__)
model = pickle.load(open('model_svm.pkl','rb'))
scaler = pickle.load(open('scaling.pkl','rb'))
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict',methods=['POST'])
def predict():
int_features = [float(x) for x in request.form.values()]
final_features = [np.array(int_features)]
final_features = scaler.transform(final_features)
prediction = model.predict(final_features)
output = prediction
if output == [0]:
output = "Parkinsons Disease Not Detected"
elif output == [1]:
output = "Parkinsons Disease Detected"
return render_template('index.html', prediction_text='Diagnosis Result: {}'.format(output))
if __name__ == "__main__":
app.run(debug=True)