-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGUI_Final.py
832 lines (648 loc) · 31.2 KB
/
GUI_Final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
###############################################################################################################################
# Required libraries for Tkinter GUI
from tkinter import *
from tkinter import ttk
from tkinter import filedialog
import cv2
import time
import math
import PIL.Image as Image
import PIL.ImageTk as ImageTk
# Required libraries for classification model and video processing
from keras.models import model_from_json
import numpy as np
import matplotlib.pyplot as plt
###############################################################################################################################
Custom_Title_Font = ("Verdana", 20)
Custom_Section_Font = ("Times New Roman", 15)
Custom_Label_Font = ("Times New Roman", 12)
confi_dict = {0: "Over Confident", 1: "Bit Nervous", 2: "Under Confident", 3: "Confident", 4: "Nervous", 5: "Bit Confident", 6: "Neutral"} # use for FER 2013 dataset
colour_cycle = ((0, 0, 255), (255,255,0), (255,0,125), (0,128,255), (255,0,0), (0,255,255), (0,165,0), (105,105,105))
newC_dict = {0: "Over Confident", 1: "Confident", 2: "Neutral", 3: "Nervous", 4: "Under Confident"}
newClr_cycle = ((0, 0, 255), (0,128,255), (0,165,0), (255,0,0), (255,0,125), (105,105,105))
###############################################################################################################################
# Video Processing Class ######################################################################################################
class MyVideoCapture:
def __init__(self, video_source=0):
# Open the video source
self.vid = cv2.VideoCapture(video_source)
if not self.vid.isOpened():
raise ValueError("Unable to open video source", video_source)
# Get video source width and height
self.width = self.vid.get(cv2.CAP_PROP_FRAME_WIDTH)
self.height = self.vid.get(cv2.CAP_PROP_FRAME_HEIGHT)
# print("width =",self.width,'height =',self.height)
# ---------------------------------------------------------------------------------------------------------------------
# Initializing Parameters for detection through model...
# results storing variables
self.videoC = [] # for face
self.allCL = [] # overall
self.pBar = [] # progress bar list
# Trained Face Images parameters
self.fwd = 48
self.fht = 48
fmodel_path = './model/'
# fmodel_path = './model/fmodel/' # new model
self.fmodel = self.load_model(fmodel_path)
# ******** face cascading file import
fcc_path = "./code_scripts/Tools/haarcascade_frontalface_alt.xml"
self.faceCascade = cv2.CascadeClassifier(fcc_path)
# Trained Upper Body Images parameters (width, height, etc.)
self.ubwd = 480 # 720
self.ubht = 480 # 600 # 720
bmodel_path = './model/upperbody/' + 'try/'
self.bmodel = self.load_model(bmodel_path)
# ********* upper body cascading file import
# bcc_path = "./code_scripts/Tools/haarcascade_upperbody.xml"
# self.bodyCascade = cv2.CascadeClassifier(bcc_path)
# ---------------------------------------------------------------------------------------------------------------------
def get_frame(self):
if self.vid.isOpened():
ret, frame = self.vid.read()
if ret:
frame = self.processImg(frame)
# Return a boolean success flag and the current frame converted to BGR
return (ret, cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
else:
return (ret, None)
else:
return (None, None)
# Release the video source when the object is destroyed
def __del__(self):
if self.vid.isOpened():
self.vid.release()
cv2.destroyAllWindows()
return self.videoC, self.allCL
# -------------------------------------------------------------------------------------------------------------------------
# loading the trained model
def load_model(self, model_path):
json_file = open(model_path + 'model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
model = model_from_json(loaded_model_json)
model.load_weights(model_path + "model.h5")
print("Loaded model from disk")
return model
# predicting class from the model
def predict_CL(self, model, gray, x, y, w, h, dwd, dht):
InReg = np.expand_dims(np.expand_dims(np.resize(gray[y:y+w, x:x+h]/255.0, (dwd, dht)),-1), 0)
prediction = model.predict([InReg])
return(int(np.argmax(prediction)), round(max(prediction[0])*100, 2))
# evaluating images frames...
def processImg(self, imgFrame):
gray = cv2.cvtColor(imgFrame, cv2.COLOR_BGR2GRAY)
# ...............................................................................................................................
# detect faces...
faces = self.faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30)
)
if faces == (): # will change to <if not confi_id>
self.pBar.append(5)
'''
else:
# do UB detection and analysis
ix = 175
iy = 90
iw = 1280 - 350 # imgWD - 2*175
ih = 720 - 90 # imgHT - 90
ubCID, ubScore = self.predict_CL(self.bmodel, gray, ix, iy, iw, ih, self.ubwd, self.ubht)
# bclr = colour_cycle[int(ubCID)]
# cv2.rectangle(imgFrame, (ix, iy), (ix+iw, iy+ih), bclr, 2)
# cv2.line(imgFrame, (ix+8, iy),(ix+150, iy), bclr, 20)
# confi_UB = confi_dict[ubCID]
# storing confi of faces frame wise for the video
self.allCL.append(int(ubCID))
self.pBar.append(int(ubCID))
# cv2.putText(imgFrame, confi_UB + ": " + str(ubScore) + "%" , (x+20, y+5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), lineType=cv2.LINE_AA)
'''
# for faces.....
for (count,(x, y, w, h)) in enumerate(faces):
confi_id, C_score = self.predict_CL(self.fmodel, gray, x, y, w, h, self.fwd, self.fht)
if confi_id == 5:
confi_id = 3
elif confi_id == 1:
confi_id = 4
colour = colour_cycle[int(confi_id)]
# colour = colour_cycle[int(count%len(colour_cycle))]
cv2.rectangle(imgFrame, (x, y), (x+w, y+h), colour, 2)
cv2.line(imgFrame, (x+5, y+h+5),(x+100, y+h+5), colour, 20)
cv2.putText(imgFrame, "Face #"+str(count+1), (x+5, y+h+11), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), lineType=cv2.LINE_AA)
cv2.line(imgFrame, (x+8, y),(x+150, y), colour, 20)
confi_L = confi_dict[confi_id]
# storing confi of faces frame wise for the video
self.videoC.append(int(confi_id))
# self.pBar.append(int(confi_id))
cv2.putText(imgFrame, confi_L + ": " + str(C_score) + "%" , (x+20, y+5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), lineType=cv2.LINE_AA)
# do UB detection and analysis
ix = x + int(w/2) - 360
iy = 1
iw = 720
ih = 717 - iy
ubCID, ubScore = self.predict_CL(self.bmodel, gray, ix, iy, iw, ih, self.ubwd, self.ubht)
# if ubCID == 5:
# ubCID = 3
# elif ubCID == 1:
# ubCID = 4
bclr = newClr_cycle[int(ubCID)]
cv2.rectangle(imgFrame, (ix, iy), (ix+iw, iy+ih), bclr, 2)
cv2.line(imgFrame, (ix+8, iy),(ix+200, iy+10), bclr, 20)
confi_UB = newC_dict[ubCID]
# storing confi of faces frame wise for the video
self.allCL.append(int(ubCID))
self.pBar.append(int(ubCID))
cv2.putText(imgFrame, confi_UB + ": " + str(ubScore) + "%" , (ix+20, iy+15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), lineType=cv2.LINE_AA)
# progress Bar creation ....................................................................................................................................
# progress bar will be displayed 4% from the bottom of the frame
y = math.ceil(imgFrame.shape[0] - imgFrame.shape[0]/25)
# print ("\n################\nY:", y)
# display progress bar across the width of the video
wframe = imgFrame.shape[1]
x = 0
# white line as BG for progress bar...
cv2.line(imgFrame, (x,y), (wframe,y), (255,255,255), 2)
# displaying colorbar as progressbar....
for cID in self.pBar:
fclr = newClr_cycle[int(cID)]
cv2.line(imgFrame, (x,y), (math.ceil(x),y+3), fclr, 5)
x = x + 1
# ..........................................................................................................................................................
return imgFrame
# -------------------------------------------------------------------------------------------------------------------------
###############################################################################################################################
# HuCLES APP Class ############################################################################################################
class HuCLESapp(Tk):
def __init__(self, *args, **kwargs):
Tk.__init__(self, *args, **kwargs)
container = Frame(self)
container.pack(side=TOP, fill=BOTH, expand=True)
container.grid_rowconfigure(0, weight=1)
container.grid_columnconfigure(0, weight=1)
self.frames = {}
for F in (StartPage, VideoPopUp, LinkingFrame): # LinkingFrame
frame = F(container, self)
self.frames[F] = frame
frame.grid(row=0, column=0, sticky=NSEW)
self.show_frame(StartPage)
def show_frame(self, container1, arg=None, arg0=None):
frame = self.frames[container1]
frame.tkraise()
if arg:
frame.loadSection(self, attr=arg, battr=arg0)
elif arg == 0:
frame.loadSection(self)
###############################################################################################################################
# Global Methods.... ##########################################################################################################
def app_exit():
exit()
###############################################################################################################################
# Home (or Start) Page Class ##################################################################################################
class StartPage(Frame):
def __init__(self, parent, controller):
Frame.__init__(self, parent)
FTitle = Label(self, text="Welcome to HuCLES System!!!", font=Custom_Title_Font)
FTitle.pack(padx=10, pady=20, fill=BOTH)
sepTT = ttk.Separator(self, orient=HORIZONTAL)
sepTT.pack(anchor=NW, fill=X)
# -- Choice Selection Area & Buttons ----------------------------------------------------------------------------------
self.lblTitle = Label(self, text="Choose the way to feed video to the system for processing ...", font=Custom_Section_Font)
self.lblTitle.pack(side=TOP, padx=10, pady=10, anchor=NW)
# WebCam Button
self.camBtn = Button(self, text="Use WebCam",
command=lambda: controller.show_frame(VideoPopUp, 0))
self.camBtn.pack(anchor=NW, ipadx=5, ipady=5, padx=30, pady=10)
# Upload Video File Button
self.upldBtn = Button(self, text="Browse A FILE",
command=lambda: self.browseFILE(controller))
self.upldBtn.pack(anchor=NW, ipadx=5, ipady=5, padx=30, pady=10)
# ---------------------------------------------------------------------------------------------------------------------
# -- Exit or Quit and Refresh Application Button ----------------------------------------------------------------------------------
quitBtn = Button(self, text="EXIT",
command=lambda: app_exit(),
width=7, height=3)
quitBtn.place(anchor=NE, relx=1, x=-12, y=12)
refreshBtn = Button(self, text='REFRESH',
command=lambda: restartAPP(),
width=11, height=3)
refreshBtn.place(anchor=NW, x=12, y=12)
# ---------------------------------------------------------------------------------------------------------------------
# -- Browsing or selecting a video file from PC ... -----------------------------------------------------------------------
def browseFILE(self, controller1):
# Extracting a file name
self.fname = filedialog.askopenfilename(initialdir="./", title='Select A Video File...',
filetype=(("MP4", '*.mp4'), ("All Files", "*.*")))
# print ("Inside browse button:",self.fname)
self.dispFname = Label(self, text="")
self.dispFname.place(x=140, y=200)
self.dispFname.configure(text="Selected File is -> "+self.fname)
controller1.show_frame(VideoPopUp, self.fname)
# -------------------------------------------------------------------------------------------------------------------------
# plotting entire Video detected frames result ----------------------------------------------------------------------------
def plotVideoCL(self, clList, c_cycle, datatype=0):
if clList:
cbPATH = './OutputImg/colorbar_{}.png'.format(datatype)
lenObjs = len(clList)
# print(lenObjs)
img = np.zeros((30,lenObjs,3), np.uint8)
x = 0
for cID in clList:
# print (int(cID))
colour = c_cycle[int(cID)]
cv2.line(img, (x,0), (x,29), colour, 20)
x = x + 1
cv2.imwrite(cbPATH, img)
return cbPATH
# -------------------------------------------------------------------------------------------------------------------------
# plotting percentages of each confidence level ---------------------------------------------------------------------------
def extractEachCL(self, conf, clList, c_cycle, datatype=0):
if clList:
opPATH = './OutputImg/CB{}_{}.png'.format(datatype, conf) # datatype = (0 - face || 1 - wholeUB)....
totalCLs = len(clList)
cLevel = clList.count(conf)
cPercent = cLevel / totalCLs * 100
cColor = c_cycle[conf]
img = np.zeros((15, totalCLs, 3), np.uint8)
for x in range(totalCLs):
if x <= int(cLevel):
cv2.line(img, (x,0), (x,14), cColor, 20)
else:
cv2.line(img, (x,0), (x,14), (105,105,105), 20)
cv2.imwrite(opPATH, img)
return opPATH, cPercent, cLevel
def plotPIEChart(self, valuesCL, otype):
plt.clf()
opfile = './OutputImg/pieChart_{}.png'.format(otype)
CLlabels = ['Over Confident', 'Confident', 'Neutral', 'Nervous', 'Under Confident']
CLcolors = ['red', 'darkorange', 'green', 'blue', 'purple']
explode = (0,0.1,0,0,0)
plt.pie(valuesCL, explode=explode, labels=CLlabels,
colors=CLcolors, shadow=True,
startangle=90, autopct='%.2f%%')
# plt.show()
plt.savefig(opfile, transparent=True)
return opfile
# -------------------------------------------------------------------------------------------------------------------------
def goToMCaN(self, controller1):
faceperList = self.percList0
nameList = ['OC', 'CO', 'NU', 'NV', 'UC']
imax = 0
for i in range(len(faceperList)-1):
if faceperList[imax] < faceperList[i+1]:
imax = i+1
controller1.show_frame(LinkingFrame, self.rList, nameList[imax])
# -- Result (Graphs and visualization) Section ----------------------------------------------------------------------------
def loadSection(self, ctrlor, attr=None, battr=None):
# self.camBtn.pack_forget()
# self.upldBtn.pack_forget()
sepTT = ttk.Separator(self, orient=HORIZONTAL)
sepTT.pack(anchor=NW, fill=X)
self.rList = attr # face detection result list
self.oList = battr
# print (self.rList)
# Button to go to M-CaN Window
self.goBtn = Button(self, text="Open Syncergy",
command=lambda: self.goToMCaN(ctrlor))
self.goBtn.pack(ipadx=5, ipady=5, padx=5, pady=10)
# Result Section 1 ********************************************************************************
self.sec1 = LabelFrame(self, text="Result PART 1")
self.sec1.pack(side=LEFT, fill=BOTH, expand=TRUE, padx=3, pady=2)
# Contents in Section 1
self.canvas1 = Canvas(self.sec1)
self.canvas1.pack(pady=(15,2), fill=BOTH, expand=True)
# Video Frames ColorBar
self.demo1 = Label(self.sec1, text="Body Parameters: ",
font=Custom_Label_Font)
self.demo1.place(anchor=NW, x=10, y=35)
self.cbPath = self.plotVideoCL(self.oList, newClr_cycle, datatype=1) # use oList here
self.cbIMG = ImageTk.PhotoImage(file=self.cbPath)
self.canvas1.create_image(150, 15, image=self.cbIMG, anchor=NW)
# OC Percentage Bar......
self.OCpath, self.OCcount, self.OCperc = self.extractEachCL(0, self.oList, newClr_cycle, datatype=1) # oList
self.labelOC = Label(self.sec1, text="Over Confident: ",
font=Custom_Label_Font)
self.labelOC.place(anchor=NW, x=10, y=85)
self.OCIMG = ImageTk.PhotoImage(file=self.OCpath)
self.canvas1.create_image(150, 75, image=self.OCIMG, anchor=NW)
# CO Percentage Bar......
self.COpath, self.COcount, self.COperc = self.extractEachCL(1, self.oList, newClr_cycle, datatype=1) # oList
self.labelCO = Label(self.sec1, text="Confident: ",
font=Custom_Label_Font)
self.labelCO.place(anchor=NW, x=10, y=115)
self.COIMG = ImageTk.PhotoImage(file=self.COpath)
self.canvas1.create_image(150, 105, image=self.COIMG, anchor=NW)
# NU Percentage Bar......
self.NUpath, self.NUcount, self.NUperc = self.extractEachCL(2, self.oList, newClr_cycle, datatype=1) # oList
self.labelNU = Label(self.sec1, text="Neutral: ",
font=Custom_Label_Font)
self.labelNU.place(anchor=NW, x=10, y=145)
self.NUIMG = ImageTk.PhotoImage(file=self.NUpath)
self.canvas1.create_image(150, 135, image=self.NUIMG, anchor=NW)
# NV Percentage Bar......
self.NVpath, self.NVcount, self.NVperc = self.extractEachCL(3, self.oList, newClr_cycle, datatype=1) # oList
self.labelNV = Label(self.sec1, text="Nervous: ",
font=Custom_Label_Font)
self.labelNV.place(anchor=NW, x=10, y=175)
self.NVIMG = ImageTk.PhotoImage(file=self.NVpath)
self.canvas1.create_image(150, 165, image=self.NVIMG, anchor=NW)
# UC Percentage Bar......
self.UCpath, self.UCcount, self.UCperc = self.extractEachCL(4, self.oList, newClr_cycle, datatype=1) # oList
self.labelUC = Label(self.sec1, text="Under Confident: ",
font=Custom_Label_Font)
self.labelUC.place(anchor=NW, x=10, y=205)
self.UCIMG = ImageTk.PhotoImage(file=self.UCpath)
self.canvas1.create_image(150, 195, image=self.UCIMG, anchor=NW)
# displaying PIE chart ....
percList = [self.OCperc, self.COperc, self.NUperc, self.NVperc, self.UCperc]
self.piePath = self.plotPIEChart(percList, 'UB') # wholeUB replace with face
self.pieImg = ImageTk.PhotoImage(file=self.piePath)
self.canvas1.create_image(100, 215, image=self.pieImg, anchor=NW)
# **************************************************************************************************
# Section separator
sep = ttk.Separator(self, orient=VERTICAL)
sep.pack(side=LEFT, fill=Y, padx=(2,1))
# Result Section 2 *********************************************************************************
self.sec2 = LabelFrame(self, text="Result PART 2")
self.sec2.pack(side=LEFT, fill=BOTH, expand=TRUE, padx=3, pady=2)
# Contents in Section 2
self.canvas2 = Canvas(self.sec2)
self.canvas2.pack(pady=15, fill=BOTH, expand=True)
self.demo2 = Label(self.sec2, text="Based on Face: ",
font=Custom_Label_Font)
self.demo2.place(anchor=NW, x=10, y=35)
# Face part Output visualization
self.cbPath0 = self.plotVideoCL(self.rList, colour_cycle)
self.cbIMG0 = ImageTk.PhotoImage(file=self.cbPath0)
self.canvas2.create_image(150, 15, image=self.cbIMG0, anchor=NW)
# OC Percentage Bar......
self.OCpath0, self.OCcount0, self.OCperc0 = self.extractEachCL(0, self.rList, colour_cycle)
self.labelOC0 = Label(self.sec2, text="Over Confident: ",
font=Custom_Label_Font)
self.labelOC0.place(anchor=NW, x=10, y=85)
self.OCIMG0 = ImageTk.PhotoImage(file=self.OCpath0)
self.canvas2.create_image(150, 75, image=self.OCIMG0, anchor=NW)
# CO Percentage Bar......
self.COpath0, self.COcount0, self.COperc0 = self.extractEachCL(3, self.rList, colour_cycle)
self.labelCO0 = Label(self.sec2, text="Confident: ",
font=Custom_Label_Font)
self.labelCO0.place(anchor=NW, x=10, y=115)
self.COIMG0 = ImageTk.PhotoImage(file=self.COpath0)
self.canvas2.create_image(150, 105, image=self.COIMG0, anchor=NW)
# NU Percentage Bar......
self.NUpath0, self.NUcount0, self.NUperc0 = self.extractEachCL(6, self.rList, colour_cycle)
self.labelNU0 = Label(self.sec2, text="Neutral: ",
font=Custom_Label_Font)
self.labelNU0.place(anchor=NW, x=10, y=145)
self.NUIMG0 = ImageTk.PhotoImage(file=self.NUpath0)
self.canvas2.create_image(150, 135, image=self.NUIMG0, anchor=NW)
# NV Percentage Bar......
self.NVpath0, self.NVcount0, self.NVperc0 = self.extractEachCL(4, self.rList, colour_cycle)
self.labelNV0 = Label(self.sec2, text="Nervous: ",
font=Custom_Label_Font)
self.labelNV0.place(anchor=NW, x=10, y=175)
self.NVIMG0 = ImageTk.PhotoImage(file=self.NVpath0)
self.canvas2.create_image(150, 165, image=self.NVIMG0, anchor=NW)
# UC Percentage Bar......
self.UCpath0, self.UCcount0, self.UCperc0 = self.extractEachCL(2, self.rList, colour_cycle)
self.labelUC0 = Label(self.sec2, text="Under Confident: ",
font=Custom_Label_Font)
self.labelUC0.place(anchor=NW, x=10, y=205)
self.UCIMG0 = ImageTk.PhotoImage(file=self.UCpath0)
self.canvas2.create_image(150, 195, image=self.UCIMG0, anchor=NW)
# displaying PIE chart ....
self.percList0 = [self.OCperc0, self.COperc0, self.NUperc0, self.NVperc0, self.UCperc0]
self.piePath0 = self.plotPIEChart(self.percList0, 'face')
self.pieImg0 = ImageTk.PhotoImage(file=self.piePath0)
self.canvas2.create_image(100, 215, image=self.pieImg0, anchor=NW)
# **************************************************************************************************
# -------------------------------------------------------------------------------------------------------------------------
###############################################################################################################################
# Video Displaying Page Class #################################################################################################
class VideoPopUp(Frame):
def __init__(self, parent, controller):
Frame.__init__(self, parent)
lblTitle = Label(self, text="Analyzing the Video ...", font=Custom_Title_Font)
lblTitle.pack(padx=10, pady=20, fill=BOTH)
# self.video_source = video_source
# self.loadVideo()
# --------------------------------------------------------------------------------------------------------------------------
# -- Video Canvas Visualization --------------------------------------------------------------------------------------------
def loadSection(self, controller, attr=0, battr=None):
# ****************************************************************************************
sepTT = ttk.Separator(self, orient=HORIZONTAL)
sepTT.pack(anchor=NW, fill=X)
# ** Video Widget Initialization *********************************************************
self.video_source = attr
print (self.video_source)
# Opening video source
self.vid = MyVideoCapture(self.video_source)
# Create a canvas that can fit the above video source size
# self.canvas = tkinter.Canvas(window, width = self.vid.width, height = self.vid.height)
self.canvas = Canvas(self, width = 960, height = 540)
self.canvas.pack(pady=15)
# Button that lets the user take a snapshot
self.btn_ss = Button(self, text="Snapshot", width=50, height=2, command=self.snapshot)
self.btn_ss.pack(anchor=CENTER, expand=True)
# After it is called once, the update method will be automatically called every delay milliseconds
self.delay = 2
self.updateVidFrame()
# Back Button
bkBtn = Button(self, text="Stop & Go Back",
command=lambda: self.stopVid(controller),
width=13, height=3)
bkBtn.place(anchor=NE, relx=1, x=-12, y=12)
# ****************************************************************************************
def snapshot(self):
# Get a frame from the video source
ret, frame = self.vid.get_frame()
if ret:
cv2.imwrite("./images/frame-" + time.strftime("%d-%m-%Y-%H-%M-%S") + ".jpg", cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
def updateVidFrame(self):
# Get a frame from the video source
ret, frame = self.vid.get_frame()
if ret:
self.photo = ImageTk.PhotoImage(image=Image.fromarray(frame).resize((960,540)))
self.canvas.create_image(0, 0, image=self.photo, anchor=NW)
self.after(self.delay, self.updateVidFrame)
# ****************************************************************************************
# Stopping the video and going back to main screen ...
def stopVid(self, ctrlor):
videoC, allCL = self.vid.__del__()
self.arg = videoC # 'testing'
self.arg0 = allCL
ctrlor.show_frame(StartPage, self.arg, self.arg0)
# --------------------------------------------------------------------------------------------------------------------------
###############################################################################################################################
# Mapping with Hormones Page Class #################################################################################################
class LinkingFrame(Frame):
def __init__(self, parent, controller):
Frame.__init__(self, parent)
lblTitle = Label(self, text="SYNCERGY (M - CaN)...", font=Custom_Title_Font)
lblTitle.pack(padx=10, pady=20, fill=BOTH)
# Back Button
bkBtn = Button(self, text="Go Back",
command=lambda: self.goBack(controller),
width=10, height=3)
bkBtn.place(anchor=NE, relx=1, x=-12, y=12)
sepTT = ttk.Separator(self, orient=HORIZONTAL)
sepTT.pack(anchor=NW, fill=X)
self.canvasMN = Canvas(self, width = 960, height = 540)
self.canvasMN.pack(pady=5, expand=True)
self.imgMCaN = ImageTk.PhotoImage(file='./Syncergy.png')
self.canvasMN.create_image(5, 5, image=self.imgMCaN, anchor=NW)
# --------------------------------------------------------------------------------------------------------------------------
# -- Syncergy Evaluation Visualization --------------------------------------------------------------------------------------------
def loadSection(self, controller, attr=0, battr=None):
# ****************************************************************************************
sepTT = ttk.Separator(self, orient=HORIZONTAL)
sepTT.pack(anchor=NW, fill=X)
# ** MN Initialization *********************************************************
self.fList = attr
self.NE = 0.0
self.DA = 0.0
self.HT5 = 0.0
# evaluate Button
self.evalBtn = Button(self, text="Evaluate Syncergy",
command=lambda: self.evalSyncergy(attr, battr))
self.evalBtn.pack(ipadx=10, ipady=10, padx=5, pady=10)
# ****************************************************************************************
def evalSyncergy(self, vfList, lARG):
totalF = len(vfList)
for xitem in vfList:
self.NE += 0.1
self.DA += 0.1
self.HT5 += 0.1
if xitem == 0:
self.HT5 += 0.9
elif xitem == 3:
self.DA += 0.8
self.HT5 += 0.3
elif xitem == 6:
self.NE += 0.4
self.DA += 0.4
self.HT5 += 0.4
elif xitem == 4:
self.NE += 0.55
self.HT5 += 0.55
elif xitem == 2:
self.NE += 0.9
tNE = self.NE / totalF
tDA = self.DA / totalF
tHT5 = self.HT5 / totalF
sepTT = ttk.Separator(self, orient=HORIZONTAL)
sepTT.pack(anchor=NW, fill=X)
self.resultName = self.getResultStr(lARG)
self.FinalLabel = Label(self, text="PREDICTED - "+self.resultName, font=Custom_Section_Font)
self.FinalLabel.pack(side=TOP, padx=5, pady=(10,5))
# divide into two sections
sepTT = ttk.Separator(self, orient=HORIZONTAL)
sepTT.pack(anchor=NW, fill=X)
# section 1
self.Rsec1 = LabelFrame(self)
self.Rsec1.pack(side=LEFT, fill=BOTH, expand=TRUE, padx=3, pady=2)
self.canResults = Canvas(self.Rsec1)
self.canResults.pack(pady=10, fill=BOTH, expand=True)
self.pathNE = self.plotBarMN(0, tNE)
self.labelNE = Label(self.canResults, text="Norepinephrine (NE): ",
font=Custom_Label_Font)
self.labelNE.place(anchor=NW, x=40, y=40)
self.imgNE = ImageTk.PhotoImage(file=self.pathNE)
self.canResults.create_image(220, 47, image=self.imgNE, anchor=NW)
self.pathDA = self.plotBarMN(3, tDA)
self.labelDA = Label(self.canResults, text="Dopamine (DA): ",
font=Custom_Label_Font)
self.labelDA.place(anchor=NW, x=40, y=70)
self.imgDA = ImageTk.PhotoImage(file=self.pathDA)
self.canResults.create_image(220, 77, image=self.imgDA, anchor=NW)
self.pathHT5 = self.plotBarMN(2, tHT5)
self.labelHT5 = Label(self.canResults, text="Serotonin (5-HT): ",
font=Custom_Label_Font)
self.labelHT5.place(anchor=NW, x=40, y=100)
self.imgHT5 = ImageTk.PhotoImage(file=self.pathHT5)
self.canResults.create_image(220, 107, image=self.imgHT5, anchor=NW)
# section 2
# Section separator
sep = ttk.Separator(self, orient=VERTICAL)
sep.pack(side=LEFT, fill=Y, padx=(2,1))
# Result Section 2 *********************************************************************************
self.Rsec2 = LabelFrame(self)
self.Rsec2.pack(side=LEFT, fill=BOTH, expand=TRUE, padx=3, pady=2)
# Contents in Section 2
self.canRes2 = Canvas(self.Rsec2)
self.canRes2.pack(pady=2, fill=BOTH, expand=True)
valMN = [tNE, tDA, tHT5]
self.MNpiePath = self.plotDoughnut(valMN)
self.imgMNPie = ImageTk.PhotoImage(file=self.MNpiePath)
self.canRes2.create_image(300, 0, image=self.imgMNPie, anchor=NW)
return
def getResultStr(self, CLval):
if CLval == 'OC':
tempName = '## Over Confident ## - Since content of Norepinephrine AND Dopamine <<< Serotonin...'
elif CLval == 'CO':
tempName = '## Confident ## - Since content of Norepinephrine << Dopamine OR BOTH Dopamine AND Serotonin...'
elif CLval == 'NU':
tempName = '## Neutral ## - Since content of Norepinephrine, Dopamine AND Serotonin are around nearby to each other...'
elif CLval == 'NV':
tempName = '## Nervous ## - Since content of Norepinephrine AND Serotonin >> Dopamine...'
elif CLval == 'UC':
tempName = '## Under Confident ## - Since content of Norepinephrine >>> Serotonin AND Dopamine...'
namelbl = tempName
return namelbl
def plotBarMN(self, cCode, mnPerc):
opPATH = './OutputImg/MN_{}.png'.format(cCode) # datatype = (0 - face || 1 - wholeUB)....
totalFr = len(self.fList)
bEnd = int(720 * mnPerc)
print ("Neuro -",cCode,":",bEnd)
cColor = newClr_cycle[cCode]
img = np.zeros((15, 720, 3), np.uint8)
for x in range(720):
if x <= int(bEnd):
cv2.line(img, (x,0), (x,14), cColor, 7)
else:
cv2.line(img, (x,0), (x,14), (105,105,105), 7)
cv2.imwrite(opPATH, img)
return opPATH
# Plot Doughnut for Neurotransmitters...
def plotDoughnut(self, valuesMN):
plt.clf()
nopfile = './OutputImg/NeuroPC.png'
MNlabels = ['NE', 'DA', 'SER']
MNcolors = ['red', 'blue', 'green']
# explode = (0,0.1,0,0,0)
# Create a circle for the center of the plot
my_circle=plt.Circle( (0,0), 0.40, color='white')
plt.pie(valuesMN, labels=MNlabels,
colors=MNcolors, shadow=True,
startangle=90, autopct='%.2f%%')
p=plt.gcf()
p.gca().add_artist(my_circle)
# plt.show()
# plt.show()
plt.savefig(nopfile, transparent=True, dpi=60)
return nopfile
# ****************************************************************************************
# Stopping the video and going back to main screen ...
def goBack(self, ctrlor):
# videoC, allCL = self.vid.__del__()
# self.arg = videoC # 'testing'
# self.arg0 = allCL
ctrlor.show_frame(StartPage)
# --------------------------------------------------------------------------------------------------------------------------
###############################################################################################################################
# Creating App instance... ####################################################################################################
def initalizeAPP():
global app
app = HuCLESapp()
app.geometry("1280x720+30+30") # "960x540+50+50" # -> " w x h + xOffset + yOffset "
app.title("HuCLES-Home_Page")
app.mainloop()
# Restarting or Refreshing APP
def restartAPP():
app.destroy()
initalizeAPP()
###############################################################################################################################
# Driver Code
if __name__ == '__main__':
initalizeAPP()
###############################################################################################################################