forked from facebookresearch/dlrm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdlrm_data_pytorch.py
657 lines (596 loc) · 23.4 KB
/
dlrm_data_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#
# Description: generate inputs and targets for the dlrm benchmark
# The inpts and outputs are generated according to the following three option(s)
# 1) random distribution
# 2) synthetic distribution, based on unique accesses and distances between them
# i) R. Hassan, A. Harris, N. Topham and A. Efthymiou "Synthetic Trace-Driven
# Simulation of Cache Memory", IEEE AINAM'07
# 3) public data set
# i) Kaggle Display Advertising Challenge Dataset
# https://labs.criteo.com/2014/09/kaggle-contest-dataset-now-available-academic-use/
from __future__ import absolute_import, division, print_function, unicode_literals
# others
import bisect
import collections
import data_utils
# numpy
import numpy as np
# pytorch
import torch
from numpy import random as ra
# Kaggle Display Advertising Challenge Dataset
# dataset (str): name of dataset (Kaggle or Terabyte)
# randomize (str): determines randomization scheme
# "none": no randomization
# "day": randomizes each day"s data (only works if split = True)
# "total": randomizes total dataset
# split (bool) : to split into train, test, validation data-sets
def read_dataset(
dataset,
mini_batch_size,
randomize,
num_batches,
split=True,
raw_data="",
processed_data="",
inference_only=False,
):
# load
print("Loading %s dataset..." % dataset)
nbatches = 0
num_samples = num_batches * mini_batch_size
X_cat, X_int, y, counts = data_utils.loadDataset(
dataset, num_samples, raw_data, processed_data
)
# transform
(
X_cat_train,
X_int_train,
y_train,
X_cat_val,
X_int_val,
y_val,
X_cat_test,
X_int_test,
y_test,
) = data_utils.transformCriteoAdData(X_cat, X_int, y, split, randomize, False)
ln_emb = counts
m_den = X_int_train.shape[1]
n_emb = len(counts)
print("Sparse features = %d, Dense features = %d" % (n_emb, m_den))
# adjust parameters
if not inference_only:
lX = []
lS_offsets = []
lS_indices = []
lT = []
train_nsamples = len(y_train)
data_size = train_nsamples
nbatches = int(np.floor((data_size * 1.0) / mini_batch_size))
print("Training data")
if num_batches != 0 and num_batches < nbatches:
print(
"Limiting to %d batches of the total % d batches"
% (num_batches, nbatches)
)
nbatches = num_batches
else:
print("Total number of batches %d" % nbatches)
# training data main loop
for j in range(0, nbatches):
# number of data points in a batch
print("Reading in batch: %d / %d" % (j + 1, nbatches), end="\r")
n = min(mini_batch_size, data_size - (j * mini_batch_size))
# dense feature
idx_start = j * mini_batch_size
# WARNING: X_int_train is a PyTorch tensor
lX.append(
torch.tensor(
(X_int_train[idx_start : (idx_start + n)])
.numpy()
.astype(np.float32)
)
)
# Training targets - ouptuts
# WARNING: y_train is a PyTorch tensor
lT.append(
torch.tensor(
(y_train[idx_start : idx_start + n])
.numpy()
.reshape(-1, 1)
.astype(np.float32)
)
)
# sparse feature (sparse indices)
lS_emb_indices = []
# for each embedding generate a list of n lookups,
# where each lookup is composed of multiple sparse indices
for size in range(n_emb):
lS_batch_indices = []
for _b in range(n):
# WARNING: X_cat_train is a PyTorch tensor
# store lengths and indices
lS_batch_indices += (
(X_cat_train[idx_start + _b][size].view(-1))
.numpy()
.astype(np.int64)
).tolist()
lS_emb_indices.append(torch.tensor(lS_batch_indices))
lS_indices.append(lS_emb_indices)
# Criteo Kaggle data it is 1 because data is categorical
lS_offsets.append([torch.tensor(list(range(n))) for _ in range(n_emb)])
print("\n")
# adjust parameters
lX_test = []
lS_offsets_test = []
lS_indices_test = []
lT_test = []
test_nsamples = len(y_test)
data_size = test_nsamples
nbatches_test = int(np.floor((data_size * 1.0) / mini_batch_size))
print("Testing data")
if num_batches != 0 and num_batches < nbatches_test:
print(
"Limiting to %d batches of the total % d batches"
% (num_batches, nbatches_test)
)
nbatches_test = num_batches
else:
print("Total number of batches %d" % nbatches_test)
# testing data main loop
for j in range(0, nbatches_test):
# number of data points in a batch
print("Reading in batch: %d / %d" % (j + 1, nbatches_test), end="\r")
n = min(mini_batch_size, data_size - (j * mini_batch_size))
# dense feature
idx_start = j * mini_batch_size
# WARNING: X_int_test is a PyTorch tensor
lX_test.append(
torch.tensor(
(X_int_test[idx_start : (idx_start + n)]).numpy().astype(np.float32)
)
)
# Training targets - ouptuts
# WARNING: y_test is a PyTorch tensor
lT_test.append(
torch.tensor(
(y_test[idx_start : idx_start + n])
.numpy()
.reshape(-1, 1)
.astype(np.float32)
)
)
# sparse feature (sparse indices)
lS_emb_indices = []
# for each embedding generate a list of n lookups,
# where each lookup is composed of multiple sparse indices
for size in range(n_emb):
lS_batch_indices = []
for _b in range(n):
# WARNING: X_cat_test is a PyTorch tensor
# store lengths and indices
lS_batch_indices += (
(X_cat_test[idx_start + _b][size].view(-1)).numpy().astype(np.int64)
).tolist()
lS_emb_indices.append(torch.tensor(lS_batch_indices))
lS_indices_test.append(lS_emb_indices)
# Criteo Kaggle data it is 1 because data is categorical
lS_offsets_test.append([torch.tensor(list(range(n))) for _ in range(n_emb)])
print("\n")
if not inference_only:
return (
nbatches,
lX,
lS_offsets,
lS_indices,
lT,
nbatches_test,
lX_test,
lS_offsets_test,
lS_indices_test,
lT_test,
ln_emb,
m_den,
)
else:
return (
nbatches_test,
lX_test,
lS_offsets_test,
lS_indices_test,
lT_test,
None,
None,
None,
None,
None,
ln_emb,
m_den,
)
# uniform ditribution (input data)
def generate_random_input_data(
data_size,
num_batches,
mini_batch_size,
round_targets,
num_indices_per_lookup,
num_indices_per_lookup_fixed,
m_den,
ln_emb,
):
nbatches = int(np.ceil((data_size * 1.0) / mini_batch_size))
if num_batches != 0:
nbatches = num_batches
data_size = nbatches * mini_batch_size
# print("Total number of batches %d" % nbatches)
# inputs
lX = []
lS_offsets = []
lS_indices = []
for j in range(0, nbatches):
# number of data points in a batch
n = min(mini_batch_size, data_size - (j * mini_batch_size))
# dense feature
Xt = ra.rand(n, m_den).astype(np.float32)
lX.append(torch.tensor(Xt))
# sparse feature (sparse indices)
lS_emb_offsets = []
lS_emb_indices = []
# for each embedding generate a list of n lookups,
# where each lookup is composed of multiple sparse indices
for size in ln_emb:
lS_batch_offsets = []
lS_batch_indices = []
offset = 0
for _ in range(n):
# num of sparse indices to be used per embedding (between
if num_indices_per_lookup_fixed:
sparse_group_size = np.int64(num_indices_per_lookup)
else:
# random between [1,num_indices_per_lookup])
r = ra.random(1)
sparse_group_size = np.int64(
np.round(max([1.0], r * min(size, num_indices_per_lookup)))
)
# sparse indices to be used per embedding
r = ra.random(sparse_group_size)
sparse_group = np.unique(np.round(r * (size - 1)).astype(np.int64))
# reset sparse_group_size in case some index duplicates were removed
sparse_group_size = np.int64(sparse_group.size)
# store lengths and indices
lS_batch_offsets += [offset]
lS_batch_indices += sparse_group.tolist()
# update offset for next iteration
offset += sparse_group_size
lS_emb_offsets.append(torch.tensor(lS_batch_offsets))
lS_emb_indices.append(torch.tensor(lS_batch_indices))
lS_offsets.append(lS_emb_offsets)
lS_indices.append(lS_emb_indices)
return (nbatches, lX, lS_offsets, lS_indices)
# uniform distribution (output data)
def generate_random_output_data(
data_size, num_batches, mini_batch_size, num_targets=1, round_targets=False
):
nbatches = int(np.ceil((data_size * 1.0) / mini_batch_size))
if num_batches != 0:
nbatches = num_batches
data_size = nbatches * mini_batch_size
# print("Total number of batches %d" % nbatches)
lT = []
for j in range(0, nbatches):
# number of data points in a batch
n = min(mini_batch_size, data_size - (j * mini_batch_size))
# target (probability of a click)
if round_targets:
P = np.round(ra.rand(n, num_targets).astype(np.float32)).astype(np.float32)
else:
P = ra.rand(n, num_targets).astype(np.float32)
lT.append(torch.tensor(P))
return (nbatches, lT)
# synthetic distribution (input data)
def generate_synthetic_input_data(
data_size,
num_batches,
mini_batch_size,
round_targets,
num_indices_per_lookup,
num_indices_per_lookup_fixed,
m_den,
ln_emb,
trace_file,
enable_padding=False,
):
nbatches = int(np.ceil((data_size * 1.0) / mini_batch_size))
if num_batches != 0:
nbatches = num_batches
data_size = nbatches * mini_batch_size
# print("Total number of batches %d" % nbatches)
# inputs and targets
lX = []
lS_offsets = []
lS_indices = []
for j in range(0, nbatches):
# number of data points in a batch
n = min(mini_batch_size, data_size - (j * mini_batch_size))
# dense feature
Xt = ra.rand(n, m_den).astype(np.float32)
lX.append(torch.tensor(Xt))
# sparse feature (sparse indices)
lS_emb_offsets = []
lS_emb_indices = []
# for each embedding generate a list of n lookups,
# where each lookup is composed of multiple sparse indices
for i, size in enumerate(ln_emb):
lS_batch_offsets = []
lS_batch_indices = []
offset = 0
for _ in range(n):
# num of sparse indices to be used per embedding (between
if num_indices_per_lookup_fixed:
sparse_group_size = np.int64(num_indices_per_lookup)
else:
# random between [1,num_indices_per_lookup])
r = ra.random(1)
sparse_group_size = np.int64(
max(1, np.round(r * min(size, num_indices_per_lookup))[0])
)
# sparse indices to be used per embedding
file_path = trace_file
line_accesses, list_sd, cumm_sd = read_dist_from_file(
file_path.replace("j", str(i))
)
# debug prints
# print("input")
# print(line_accesses); print(list_sd); print(cumm_sd);
# print(sparse_group_size)
# approach 1: rand
# r = trace_generate_rand(
# line_accesses, list_sd, cumm_sd, sparse_group_size, enable_padding
# )
# approach 2: lru
r = trace_generate_lru(
line_accesses, list_sd, cumm_sd, sparse_group_size, enable_padding
)
# WARNING: if the distribution in the file is not consistent
# with embedding table dimensions, below mod guards against out
# of range access
sparse_group = np.unique(r).astype(np.int64)
minsg = np.min(sparse_group)
maxsg = np.max(sparse_group)
if (minsg < 0) or (size <= maxsg):
print(
"WARNING: distribution is inconsistent with embedding "
+ "table size (using mod to recover and continue)"
)
sparse_group = np.mod(sparse_group, size).astype(np.int64)
# sparse_group = np.unique(np.array(np.mod(r, size-1)).astype(np.int64))
# reset sparse_group_size in case some index duplicates were removed
sparse_group_size = np.int64(sparse_group.size)
# store lengths and indices
lS_batch_offsets += [offset]
lS_batch_indices += sparse_group.tolist()
# update offset for next iteration
offset += sparse_group_size
lS_emb_offsets.append(torch.tensor(lS_batch_offsets))
lS_emb_indices.append(torch.tensor(lS_batch_indices))
lS_offsets.append(lS_emb_offsets)
lS_indices.append(lS_emb_indices)
return (nbatches, lX, lS_offsets, lS_indices)
def generate_stack_distance(cumm_val, cumm_dist, max_i, i, enable_padding=False):
u = ra.rand(1)
if i < max_i:
# only generate stack distances up to the number of new references seen so far
j = bisect.bisect(cumm_val, i) - 1
fi = cumm_dist[j]
u *= fi # shrink distribution support to exclude last values
elif enable_padding:
# WARNING: disable generation of new references (once all have been seen)
fi = cumm_dist[0]
u = (1.0 - fi) * u + fi # remap distribution support to exclude first value
for (j, f) in enumerate(cumm_dist):
if u <= f:
return cumm_val[j]
# WARNING: global define, must be consistent across all synthetic functions
cache_line_size = 1
def trace_generate_lru(
line_accesses, list_sd, cumm_sd, out_trace_len, enable_padding=False
):
max_sd = list_sd[-1]
l = len(line_accesses)
i = 0
ztrace = []
for _ in range(out_trace_len):
sd = generate_stack_distance(list_sd, cumm_sd, max_sd, i, enable_padding)
mem_ref_within_line = 0 # floor(ra.rand(1)*cache_line_size) #0
# generate memory reference
if sd == 0: # new reference #
line_ref = line_accesses.pop(0)
line_accesses.append(line_ref)
mem_ref = np.uint64(line_ref * cache_line_size + mem_ref_within_line)
i += 1
else: # existing reference #
line_ref = line_accesses[l - sd]
mem_ref = np.uint64(line_ref * cache_line_size + mem_ref_within_line)
line_accesses.pop(l - sd)
line_accesses.append(line_ref)
# save generated memory reference
ztrace.append(mem_ref)
return ztrace
def trace_generate_rand(
line_accesses, list_sd, cumm_sd, out_trace_len, enable_padding=False
):
max_sd = list_sd[-1]
l = len(line_accesses) # !!!Unique,
i = 0
ztrace = []
for _ in range(out_trace_len):
sd = generate_stack_distance(list_sd, cumm_sd, max_sd, i, enable_padding)
mem_ref_within_line = 0 # floor(ra.rand(1)*cache_line_size) #0
# generate memory reference
if sd == 0: # new reference #
line_ref = line_accesses.pop(0)
line_accesses.append(line_ref)
mem_ref = np.uint64(line_ref * cache_line_size + mem_ref_within_line)
i += 1
else: # existing reference #
line_ref = line_accesses[l - sd]
mem_ref = np.uint64(line_ref * cache_line_size + mem_ref_within_line)
ztrace.append(mem_ref)
return ztrace
def trace_profile(trace, enable_padding=False):
# number of elements in the array (assuming 1D)
# n = trace.size
rstack = [] # S
stack_distances = [] # SDS
line_accesses = [] # L
for x in trace:
r = np.uint64(x / cache_line_size)
l = len(rstack)
try: # found #
i = rstack.index(r)
# WARNING: I believe below is the correct depth in terms of meaning of the
# algorithm, but that is not what seems to be in the paper alg.
# -1 can be subtracted if we defined the distance between
# consecutive accesses (e.g. r, r) as 0 rather than 1.
sd = l - i # - 1
# push r to the end of stack_distances
stack_distances.insert(0, sd)
# remove r from its position and insert to the top of stack
rstack.pop(i) # rstack.remove(r)
rstack.insert(l - 1, r)
except ValueError: # not found #
sd = 0 # -1
# push r to the end of stack_distances/line_accesses
stack_distances.insert(0, sd)
line_accesses.insert(0, r)
# push r to the top of stack
rstack.insert(l, r)
if enable_padding:
# WARNING: notice that as the ratio between the number of samples (l)
# and cardinality (c) of a sample increases the probability of
# generating a sample gets smaller and smaller because there are
# few new samples compared to repeated samples. This means that for a
# long trace with relatively small cardinality it will take longer to
# generate all new samples and therefore obtain full distribution support
# and hence it takes longer for distribution to resemble the original.
# Therefore, we may pad the number of new samples to be on par with
# average number of samples l/c artificially.
l = len(stack_distances)
c = max(stack_distances)
padding = int(np.ceil(l / c))
stack_distances = stack_distances + [0] * padding
return (rstack, stack_distances, line_accesses)
# auxiliary read/write routines
def read_trace_from_file(file_path):
try:
with open(file_path) as f:
if args.trace_file_binary_type:
array = np.fromfile(f, dtype=np.uint64)
trace = array.astype(np.uint64).tolist()
else:
line = f.readline()
trace = list(map(lambda x: np.uint64(x), line.split(", ")))
return trace
except Exception:
print("ERROR: no input trace file has been provided")
def write_trace_to_file(file_path, trace):
try:
if args.trace_file_binary_type:
with open(file_path, "wb+") as f:
np.array(trace).astype(np.uint64).tofile(f)
else:
with open(file_path, "w+") as f:
s = str(trace)
f.write(s[1 : len(s) - 1])
except Exception:
print("ERROR: no output trace file has been provided")
def read_dist_from_file(file_path):
try:
with open(file_path, "r") as f:
lines = f.read().splitlines()
except Exception:
print("Wrong file or file path")
# read unique accesses
unique_accesses = [int(el) for el in lines[0].split(", ")]
# read cumulative distribution (elements are passed as two separate lists)
list_sd = [int(el) for el in lines[1].split(", ")]
cumm_sd = [float(el) for el in lines[2].split(", ")]
return unique_accesses, list_sd, cumm_sd
def write_dist_to_file(file_path, unique_accesses, list_sd, cumm_sd):
try:
with open(file_path, "w") as f:
# unique_acesses
s = str(unique_accesses)
f.write(s[1 : len(s) - 1] + "\n")
# list_sd
s = str(list_sd)
f.write(s[1 : len(s) - 1] + "\n")
# cumm_sd
s = str(cumm_sd)
f.write(s[1 : len(s) - 1] + "\n")
except Exception:
print("Wrong file or file path")
if __name__ == "__main__":
import sys
import os
import operator
import argparse
### parse arguments ###
parser = argparse.ArgumentParser(description="Generate Synthetic Distributions")
parser.add_argument("--trace-file", type=str, default="./input/trace.log")
parser.add_argument("--trace-file-binary-type", type=bool, default=False)
parser.add_argument("--trace-enable-padding", type=bool, default=False)
parser.add_argument("--dist-file", type=str, default="./input/dist.log")
parser.add_argument(
"--synthetic-file", type=str, default="./input/trace_synthetic.log"
)
parser.add_argument("--numpy-rand-seed", type=int, default=123)
parser.add_argument("--print-precision", type=int, default=5)
args = parser.parse_args()
### some basic setup ###
np.random.seed(args.numpy_rand_seed)
np.set_printoptions(precision=args.print_precision)
### read trace ###
trace = read_trace_from_file(args.trace_file)
# print(trace)
### profile trace ###
(_, stack_distances, line_accesses) = trace_profile(
trace, args.trace_enable_padding
)
stack_distances.reverse()
line_accesses.reverse()
# print(line_accesses)
# print(stack_distances)
### compute probability distribution ###
# count items
l = len(stack_distances)
dc = sorted(
collections.Counter(stack_distances).items(), key=operator.itemgetter(0)
)
# create a distribution
list_sd = list(map(lambda tuple_x_k: tuple_x_k[0], dc)) # x = tuple_x_k[0]
dist_sd = list(
map(lambda tuple_x_k: tuple_x_k[1] / float(l), dc)
) # k = tuple_x_k[1]
cumm_sd = [] # np.cumsum(dc).tolist() #prefixsum
for i, (_, k) in enumerate(dc):
if i == 0:
cumm_sd.append(k / float(l))
else:
# add the 2nd element of the i-th tuple in the dist_sd list
cumm_sd.append(cumm_sd[i - 1] + (k / float(l)))
### write stack_distance and line_accesses to a file ###
write_dist_to_file(args.dist_file, line_accesses, list_sd, cumm_sd)
### generate correspondinf synthetic ###
# line_accesses, list_sd, cumm_sd = read_dist_from_file(args.dist_file)
synthetic_trace = trace_generate_lru(
line_accesses, list_sd, cumm_sd, len(trace), args.trace_enable_padding
)
# synthetic_trace = trace_generate_rand(
# line_accesses, list_sd, cumm_sd, len(trace), args.trace_enable_padding
# )
write_trace_to_file(args.synthetic_file, synthetic_trace)