This repository has been archived by the owner on Nov 22, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathGenerator.py
executable file
·65 lines (53 loc) · 2.08 KB
/
Generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy as np
import math
class Graph:
def __init__(self, vertex_count, adjacency_matrix=None):
self.vertex_count = vertex_count
if adjacency_matrix is None:
self.adjacency_matrix = np.zeros(shape=(vertex_count, vertex_count))
else:
self.adjacency_matrix = adjacency_matrix
def transform_graph_into_covariation_matrix(graph):
matrix_size = graph.vertex_count
matrix_omega_waved = np.zeros(shape=(matrix_size, matrix_size))
for i in range(matrix_size):
for j in range(matrix_size):
if i == j:
matrix_omega_waved[i][j] = 1
elif graph.adjacency_matrix[i][j] == 1:
matrix_omega_waved[i][j] = np.random.uniform()
if matrix_omega_waved[i][j] < 0.5:
matrix_omega_waved[i][j] -= 1
matrix_a = np.zeros(shape=(matrix_size, matrix_size))
for i in range(matrix_size):
d_i = 0
for k in range(matrix_size):
if k != i:
d_i += abs(matrix_omega_waved[i][k])
if d_i != 0:
for j in range(matrix_size):
matrix_a[i][j] = 2 * matrix_omega_waved[i][j] / (3 * d_i)
matrix_omega = (matrix_a + matrix_a.transpose()) / 2
for i in range(matrix_size):
for j in range(matrix_size):
if i == j:
matrix_omega[i][j] = 1
elif abs(matrix_omega[i][j]) < 0.1:
if matrix_omega[i][j] < 0:
matrix_omega[i][j] = -0.1
elif matrix_omega[i][j] > 0:
matrix_omega[i][j] = 0.1
matrix_omega_inverted = np.linalg.inv(matrix_omega)
matrix_sigma = np.zeros(shape=(matrix_size, matrix_size))
for i in range(matrix_size):
for j in range(matrix_size):
matrix_sigma[i][j] = matrix_omega_inverted[i][j] / math.sqrt(matrix_omega_inverted[j][j] * matrix_omega_inverted[i][i])
return matrix_sigma
s = 3
edg = np.zeros(shape=(s, s))
edg[0][1] = 1
edg[1][0] = 1
edg[1][2] = 1
edg[2][1] = 0
a = Graph(s, edg)
print(transform_graph_into_covariation_matrix(a))