-
Notifications
You must be signed in to change notification settings - Fork 10
/
utils.py
156 lines (138 loc) · 5.27 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/env python
from __future__ import print_function
"""A few simple math utilities to support
bulletproof calculations; also ECC NUMS generators
using the jmbitcoin bitcoin/secp256k1 library.
"""
import hashlib
from jmbitcoin import (getG, encode, decode, N, multiply, add_pubkeys,
podle_PublicKey)
def egcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y)
def modinv(a, m):
g, x, y = egcd(a, m)
if g != 1:
raise Exception('modular inverse does not exist')
else:
return x % m
def inner_product(a, b, vtype="bin"):
assert len(a) == len(b)
assert isinstance(a, list)
assert isinstance(b, list)
c = 0
for i in range(len(a)):
if vtype == "bin":
c += decode(a[i], 256) * decode(b[i], 256)
else:
c += a[i] * b[i]
c = c % N
if vtype == "bin":
c = encode(c, 256, 32)
return c
def halves(vec):
assert len(vec) % 2 == 0
return (vec[:len(vec)/2], vec[len(vec)/2:])
#wrapper code for ECC operations
def ecmult(scalar, point, usehex, rawpub=True, return_serialized=True):
if isinstance(scalar, (int, long)):
scalar = encode(scalar, 256, minlen=32)
if decode(scalar, 256) == 0:
return None
return multiply(scalar, point, usehex, rawpub=rawpub,
return_serialized=return_serialized)
def ecadd_pubkeys(pubkeys, usehex):
pubkeys = filter(None, pubkeys)
if len(pubkeys) == 1:
return pubkeys[0]
return add_pubkeys(pubkeys, usehex)
def getNUMS(index=0):
"""Taking secp256k1's G as a seed,
either in compressed or uncompressed form,
append "index" as a byte, and append a second byte "counter"
try to create a new NUMS base point from the sha256 of that
bytestring. Loop counter and alternate compressed/uncompressed
until finding a valid curve point. The first such point is
considered as "the" NUMS base point alternative for this index value.
The search process is of course deterministic/repeatable, so
it's fine to just store a list of all the correct values for
each index, but for transparency left in code for initialization
by any user.
The NUMS generator generated is returned as a secp256k1.PublicKey.
"""
assert index in range(256)
nums_point = None
for G in [getG(True), getG(False)]:
seed = G + chr(index)
for counter in range(256):
seed_c = seed + chr(counter)
hashed_seed = hashlib.sha256(seed_c).digest()
#Every x-coord on the curve has two y-values, encoded
#in compressed form with 02/03 parity byte. We just
#choose the former.
claimed_point = "\x02" + hashed_seed
try:
nums_point = podle_PublicKey(claimed_point)
return nums_point
except:
continue
assert False, "It seems inconceivable, doesn't it?"
class Vector(object):
"""A vector with elements in Zn; here n is set as 'size'
in constructor. Optionally constructable from a value v, as integer,
converted into a bitvector; this is triggered by setting the bitlength
variable, which controls the length of the bitvector.
"""
def __str__(self):
return ",".join([str(x) for x in self.v])
def __init__(self, v, bitlength=None, size=N):
self.size = size
if bitlength:
assert isinstance(v, (int, long))
assert v >= 0
self.bitstring = bin(v)[2:]
self.v = [int(x) for x in self.bitstring]
if bitlength:
assert bitlength >= len(self.v)
self.v = [0]*(bitlength - len(self.v)) + self.v
self.bitstring = "0" * (bitlength - len(self.v)) + self.bitstring
self.v = self.v[::-1]
else:
#Some sanity checking here would be appropriate.
self.v = v
self.length = len(self.v)
def subtract(self, v):
if isinstance(v, Vector):
v = v.v
newv = [(self.v[x] - v[x]) % self.size for x in range(self.length)]
return Vector(newv, size=self.size)
def add(self, v):
if isinstance(v, Vector):
v = v.v
newv = [(self.v[x] + v[x]) % self.size for x in range(self.length)]
return Vector(newv, size=self.size)
def hadamard(self, v):
#hadamard is the vector whose elements are the pairwise product of
#the two input vectors
if isinstance(v, Vector):
v = v.v
newv = [(self.v[x] * v[x]) % self.size for x in range(self.length)]
return Vector(newv, size=self.size)
def scalar_mult(self, k):
newv = [(k * self.v[x]) % self.size for x in range(self.length)]
return Vector(newv, size=self.size)
def inner_product(self, v):
if isinstance(v, Vector):
v = v.v
return sum([(v[x] * self.v[x]) % self.size for x in range(self.length)]) % self.size
class PowerVector(Vector):
"""A vector constructed from powers of a scalar, e.g.
v = y*^n = (y^0, y^1, ... , y^(n-1))
"""
def __init__(self, val, length, size=N):
self.size = size
self.v = [pow(val, k, self.size) for k in range(length)]
self.length = len(self.v)