forked from tensorflow/tflite-micro
-
Notifications
You must be signed in to change notification settings - Fork 0
/
conv_hifi.cc
328 lines (290 loc) · 14.2 KB
/
conv_hifi.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/* Copyright 2023 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#if defined(HIFI3) || defined(HIFI4) || defined(HIFI5)
#include <cstdint>
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/portable_tensor_utils.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/conv.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/xtensa/xtensa.h"
#include "tensorflow/lite/micro/kernels/xtensa/xtensa_conv.h"
namespace tflite {
TfLiteStatus ConvPrepareHifi(TfLiteContext* context, TfLiteNode* node) {
XtensaConvOpData* data = static_cast<XtensaConvOpData*>(node->user_data);
const auto params = static_cast<const TfLiteConvParams*>(node->builtin_data);
MicroContext* micro_context = GetMicroContext(context);
// Calculate scratch memory requirements and request scratch buffer
TfLiteTensor* output =
micro_context->AllocateTempOutputTensor(node, kConvOutputTensor);
TfLiteTensor* input =
micro_context->AllocateTempInputTensor(node, kConvInputTensor);
TfLiteTensor* filter =
micro_context->AllocateTempInputTensor(node, kConvWeightsTensor);
TfLiteTensor* bias =
micro_context->AllocateTempInputTensor(node, kConvBiasTensor);
const RuntimeShape& input_shape = GetTensorShape(input);
const RuntimeShape& filter_shape = GetTensorShape(filter);
const RuntimeShape& output_shape = GetTensorShape(output);
// Check if the Xtensa optimized code can be used
// HIFI4 and HIFI5 do not allow bias data pointer to be nullptr
/* TODO(b/277112516): Dilation is currently not supported on HiFi 4 NN Library
*/
bool inputs_and_bias_ok = bias != nullptr;
#if defined(HIFI3) || defined(HIFI4) || defined(HIFI5)
inputs_and_bias_ok =
inputs_and_bias_ok &&
(input->type == kTfLiteInt8 ||
(input->type == kTfLiteInt16 && bias->type == kTfLiteInt64));
#else
inputs_and_bias_ok = inputs_and_bias_ok && (input->type == kTfLiteInt8);
#endif // defined(HIFI3) || defined(HIFI4) || defined(HIFI5)
if (!(inputs_and_bias_ok && params->dilation_width_factor == 1 &&
params->dilation_height_factor == 1 &&
input_shape.Dims(1) >= filter_shape.Dims(1) &&
input_shape.Dims(2) >= filter_shape.Dims(2))) {
micro_context->DeallocateTempTfLiteTensor(input);
micro_context->DeallocateTempTfLiteTensor(filter);
micro_context->DeallocateTempTfLiteTensor(output);
if (bias != nullptr) {
micro_context->DeallocateTempTfLiteTensor(bias);
}
return kTfLiteOk;
}
const int input_height = input_shape.Dims(1);
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_channels = output_shape.Dims(3);
const int stride_height = params->stride_height;
const int pad_height = data->reference_op_data.padding.height;
int required_scratch = 0;
// TODO(b/277112516): Dilation is currently not supported on HiFi 4 NN Library
if ((params->dilation_width_factor == 1) &&
(params->dilation_height_factor == 1)) {
if (input->type == kTfLiteInt8) {
required_scratch = xa_nn_conv2d_std_getsize(
input_height, input_depth, filter_height, filter_width, stride_height,
pad_height, output_height, output_channels, PREC_ASYM8S);
TF_LITE_ENSURE(context, required_scratch > 0);
}
if (input->type == kTfLiteInt16) {
required_scratch = xa_nn_conv2d_std_getsize(
input_height, input_depth, filter_height, filter_width, stride_height,
pad_height, output_height, output_channels, PREC_SYM16S);
TF_LITE_ENSURE(context, required_scratch > 0);
}
}
TF_LITE_ENSURE_OK(
context, context->RequestScratchBufferInArena(
context, required_scratch, &data->scratch_tensor_index));
micro_context->DeallocateTempTfLiteTensor(input);
micro_context->DeallocateTempTfLiteTensor(filter);
micro_context->DeallocateTempTfLiteTensor(output);
if (bias != nullptr) {
micro_context->DeallocateTempTfLiteTensor(bias);
}
return kTfLiteOk;
}
#if defined(HIFI3) || defined(HIFI4) || defined(HIFI5)
TfLiteStatus ConvEvalHifiInt16(TfLiteContext* context, TfLiteNode* node,
const TfLiteConvParams& params,
const XtensaConvOpData& data,
const TfLiteEvalTensor* input,
const TfLiteEvalTensor* filter,
const TfLiteEvalTensor* bias,
TfLiteEvalTensor* output) {
const RuntimeShape& input_shape = tflite::micro::GetTensorShape(input);
const RuntimeShape& filter_shape = tflite::micro::GetTensorShape(filter);
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int pad_width = data.reference_op_data.padding.width;
const int pad_height = data.reference_op_data.padding.height;
const int32_t output_activation_min =
data.reference_op_data.output_activation_min;
const int32_t output_activation_max =
data.reference_op_data.output_activation_max;
const RuntimeShape& output_shape = tflite::micro::GetTensorShape(output);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int16_t* input_data = tflite::micro::GetTensorData<int16_t>(input);
const int8_t* filter_data = tflite::micro::GetTensorData<int8_t>(filter);
const int64_t* bias_data = tflite::micro::GetTensorData<int64_t>(bias);
int16_t* output_data = tflite::micro::GetTensorData<int16_t>(output);
int output_data_format = 0;
int out_length = output_height * output_width * output_depth;
if (filter_height == 1 && filter_width == 1) {
for (int batch = 0; batch < batches; ++batch) {
int16_t* p_out_temp;
p_out_temp = &output_data[batch * out_length];
TF_LITE_ENSURE_EQ(
context,
xa_nn_conv2d_pointwise_per_chan_sym8sxsym16s(
p_out_temp, const_cast<WORD8*>(filter_data),
const_cast<WORD16*>(&input_data[batch * input_height *
input_width * input_depth]),
const_cast<WORD64*>(bias_data), input_height, input_width,
input_depth, output_depth, 0,
data.reference_op_data.per_channel_output_multiplier,
data.reference_op_data.per_channel_output_shift, 0,
output_data_format),
0);
TF_LITE_ENSURE_EQ(context,
xa_nn_vec_activation_min_max_16_16(
p_out_temp, p_out_temp, output_activation_min,
output_activation_max, out_length),
0);
}
} else {
void* p_scratch = static_cast<void*>(
context->GetScratchBuffer(context, data.scratch_tensor_index));
for (int batch = 0; batch < batches; ++batch) {
int16_t* p_out_temp;
p_out_temp = &output_data[batch * out_length];
{
TF_LITE_ENSURE_EQ(
context,
xa_nn_conv2d_std_per_chan_sym8sxsym16s(
p_out_temp,
&input_data[batch * input_height * input_width * input_depth],
const_cast<int8_t*>(filter_data), // filter_data,
bias_data, input_height, input_width, input_depth,
filter_height, filter_width, output_depth, stride_width,
stride_height, pad_width, pad_height, output_height,
output_width, 0,
data.reference_op_data.per_channel_output_multiplier,
data.reference_op_data.per_channel_output_shift, 0,
output_data_format, static_cast<void*>(p_scratch)),
0);
}
TF_LITE_ENSURE_EQ(context,
xa_nn_vec_activation_min_max_16_16(
p_out_temp, p_out_temp, output_activation_min,
output_activation_max, out_length),
0);
}
}
return kTfLiteOk;
}
#endif // defined(HIFI3) || defined(HIFI4) || defined(HIFI5)
TfLiteStatus ConvEvalHifiInt8(TfLiteContext* context, TfLiteNode* node,
const TfLiteConvParams& params,
const XtensaConvOpData& data,
const TfLiteEvalTensor* input,
const TfLiteEvalTensor* filter,
const TfLiteEvalTensor* bias,
TfLiteEvalTensor* output) {
const RuntimeShape& input_shape = tflite::micro::GetTensorShape(input);
const RuntimeShape& filter_shape = tflite::micro::GetTensorShape(filter);
const int32_t input_offset = -data.reference_op_data.input_zero_point;
const int32_t output_offset = data.reference_op_data.output_zero_point;
const int stride_width = params.stride_width;
const int stride_height = params.stride_height;
const int pad_width = data.reference_op_data.padding.width;
const int pad_height = data.reference_op_data.padding.height;
const int32_t output_activation_min =
data.reference_op_data.output_activation_min;
const int32_t output_activation_max =
data.reference_op_data.output_activation_max;
const RuntimeShape& output_shape = tflite::micro::GetTensorShape(output);
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int8_t* input_data = tflite::micro::GetTensorData<int8_t>(input);
const int32_t* bias_data = tflite::micro::GetTensorData<int32_t>(bias);
int8_t* output_data = tflite::micro::GetTensorData<int8_t>(output);
const int8_t* filter_data;
if (filter->type == kTfLiteInt4) {
int8_t* unpacked_filter_data =
static_cast<int8_t*>(context->GetScratchBuffer(
context, data.reference_op_data.filter_buffer_index));
tflite::tensor_utils::UnpackDenseInt4IntoInt8(
tflite::micro::GetTensorData<int8_t>(filter),
tflite::micro::GetTensorShape(filter).FlatSize(), unpacked_filter_data);
filter_data = unpacked_filter_data;
} else {
filter_data = tflite::micro::GetTensorData<int8_t>(filter);
}
int output_data_format = 0;
int out_length = output_height * output_width * output_depth;
if (filter_height == 1 && filter_width == 1) {
for (int batch = 0; batch < batches; ++batch) {
int8_t* p_out_temp;
p_out_temp = &output_data[batch * out_length];
TF_LITE_ENSURE_EQ(
context,
xa_nn_conv2d_pointwise_per_chan_sym8sxasym8s(
p_out_temp, const_cast<WORD8*>(filter_data),
const_cast<WORD8*>(&input_data[batch * input_height *
input_width * input_depth]),
const_cast<WORD32*>(bias_data), input_height, input_width,
input_depth, output_depth, input_offset,
data.reference_op_data.per_channel_output_multiplier,
data.reference_op_data.per_channel_output_shift, output_offset,
output_data_format),
0);
TF_LITE_ENSURE_EQ(context,
xa_nn_vec_activation_min_max_8_8(
p_out_temp, p_out_temp, output_activation_min,
output_activation_max, out_length),
0);
}
} else {
void* p_scratch = static_cast<void*>(
context->GetScratchBuffer(context, data.scratch_tensor_index));
for (int batch = 0; batch < batches; ++batch) {
int8_t* p_out_temp;
p_out_temp = &output_data[batch * out_length];
{
TF_LITE_ENSURE_EQ(
context,
xa_nn_conv2d_std_per_chan_sym8sxasym8s(
p_out_temp,
&input_data[batch * input_height * input_width * input_depth],
const_cast<int8_t*>(filter_data), // filter_data,
bias_data, input_height, input_width, input_depth,
filter_height, filter_width, output_depth, stride_width,
stride_height, pad_width, pad_height, output_height,
output_width, input_offset,
data.reference_op_data.per_channel_output_multiplier,
data.reference_op_data.per_channel_output_shift, output_offset,
output_data_format, static_cast<void*>(p_scratch)),
0);
}
TF_LITE_ENSURE_EQ(context,
xa_nn_vec_activation_min_max_8_8(
p_out_temp, p_out_temp, output_activation_min,
output_activation_max, out_length),
0);
}
}
return kTfLiteOk;
}
} // namespace tflite
#endif // defined(HIFI3) || defined(HIFI4) || defined(HIFI5)