forked from tensorflow/tflite-micro
-
Notifications
You must be signed in to change notification settings - Fork 0
/
reduce.cc
118 lines (99 loc) · 4.27 KB
/
reduce.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/reduce.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/integer_ops/mean.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/xtensa/xtensa.h"
#include "tensorflow/lite/micro/kernels/xtensa/xtensa_reduce.h"
#include "tensorflow/lite/micro/micro_utils.h"
namespace tflite {
void* XtensaInitReduce(TfLiteContext* context, const char* buffer,
size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
void* data =
context->AllocatePersistentBuffer(context, sizeof(XtensaReduceOpData));
#if defined(VISION_P6)
if (InitXtensaContext() != 0) {
return nullptr;
}
#endif
return data;
}
TfLiteStatus XtensaPrepareMax(TfLiteContext* context, TfLiteNode* node) {
OpDataReduce* op_data =
&(static_cast<XtensaReduceOpData*>(node->user_data)->reference_op_data);
TF_LITE_ENSURE_OK(context, PrepareMaxHelper(context, node, op_data));
#if defined(VISION_P6)
TF_LITE_ENSURE_OK(context, ReducePrepareVision(context, node));
#endif // VISION_P6
return kTfLiteOk;
}
TfLiteStatus XtensaPrepareMeanOrSum(TfLiteContext* context, TfLiteNode* node) {
OpDataReduce* op_data =
&(static_cast<XtensaReduceOpData*>(node->user_data)->reference_op_data);
return PrepareMeanOrSumHelper(context, node, op_data);
}
TfLiteStatus XtensaEvalMean(TfLiteContext* context, TfLiteNode* node) {
OpDataReduce* op_data =
&(static_cast<XtensaReduceOpData*>(node->user_data)->reference_op_data);
return EvalMeanHelper(context, node, op_data);
}
TfLiteStatus XtensaEvalMax(TfLiteContext* context, TfLiteNode* node) {
XtensaReduceOpData* op_data_xtensa =
static_cast<XtensaReduceOpData*>(node->user_data);
OpDataReduce* op_data = &(op_data_xtensa->reference_op_data);
#if defined(VISION_P6)
const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
switch (input->type) {
case kTfLiteInt8: {
TF_LITE_ENSURE_EQ(context, static_cast<double>(op_data->input_scale),
static_cast<double>(op_data->output_scale));
TF_LITE_ENSURE_EQ(context, op_data->input_zp, op_data->output_zp);
ReduceEvalVision(*op_data_xtensa, input, output);
break;
}
default: {
// Use the reference EvalMax for all other cases.
return EvalMaxHelper(context, node, op_data);
}
}
return kTfLiteOk;
#else
return EvalMaxHelper(context, node, op_data);
#endif
}
TfLiteStatus XtensaEvalSum(TfLiteContext* context, TfLiteNode* node) {
OpDataReduce* op_data =
&(static_cast<XtensaReduceOpData*>(node->user_data)->reference_op_data);
return EvalSumHelper(context, node, op_data);
}
TFLMRegistration Register_MEAN() {
return tflite::micro::RegisterOp(XtensaInitReduce, XtensaPrepareMeanOrSum,
XtensaEvalMean);
}
TFLMRegistration Register_REDUCE_MAX() {
return tflite::micro::RegisterOp(XtensaInitReduce, XtensaPrepareMax,
XtensaEvalMax);
}
TFLMRegistration Register_SUM() {
return tflite::micro::RegisterOp(XtensaInitReduce, XtensaPrepareMeanOrSum,
XtensaEvalSum);
}
} // namespace tflite