forked from lopmanlab/covid_campus_model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1_transmission_explore.R
55 lines (34 loc) · 1.45 KB
/
1_transmission_explore.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Figure 2: PSA + scenario analysis over a range of transmission reduction scenarios due to implentation of NPIs.
memory.limit(size=500000000)
# Load dependencies, functions and parameters
source("99_dependencies.R")
source("99_model_func.R")
source("99_parm_init_control.R")
source("99_psa_optimizedistr.R")
source("99_psa_parm.R") #Note this overwrites initial parameters from parm_init_control
eff_npi <- c(seq(0, 0.3, 0.1),0.35, seq(0.4,1.0,0.1))
pal <- brewer_ramp(7, "Spectral")
trans_list<-list() #Initialize list to collect results from each screening interval
# Below loop runs model
for (i in 1:length(eff_npi)) {
trans_list[[i]]<-model_scenarios(eff_npi.int=eff_npi[[i]],p_contacts_reached = 0)
}
#Below loop takes each scenario and computes median active and cumulative cases for students and staff on each day
trans_list_cases <- list()
for (i in 1:length(trans_list)){
trans_list_cases[[i]] <- getcases(trans_list[[i]]) %>%
mutate(scenario = rep(eff_npi[i]))
}
trans_df <- bind_rows(trans_list_cases, .id = "column_label")
trans_list_peaks <- data.frame()
for(i in 1:length(trans_list)) {
trans_list_peaks[i,1] <-max(trans_list[[i]]$I_stu)
trans_list_peaks[i,2] <- max(trans_list[[i]]$I_saf)
}
peakcases <- function(x){
x%>%
summarize(max_stu = max(I_stu),
max_saf = max(I_saf))
}
saveRDS(trans_df,"tables/res_fig2_trans_df.RDS")
saveRDS(trans_list, "tables/res_fi2_rawmodeloutputs_trans.RDS")