forked from lopmanlab/covid_campus_model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3_test_explore.R
113 lines (83 loc) · 4.27 KB
/
3_test_explore.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
## FIgure 4: Combines PSA and scenario analysis over a sweep of testing interval and contact tracing scenarios. No screening interventions and NPI effectiveness using 35%
knitr::opts_chunk$set(echo = TRUE)
# Load dependencies, functions and parameters
source("99_dependencies.R")
source("99_model_func.R")
source("99_parm_init_control.R")
source("99_psa_optimizedistr.R")
source("99_psa_parm.R") #Note this overwrites initial parameters from parm_init_control
source("99_psa_plot.R")
options(scipen=999)
options(digits=4)
# Testing only scenarios (default contact tracing), need to also specify both testing and sensitivty along with it
test_scen_in <- 1/c(2,4,7)
test_scen <- c(2, 4, 7)
sensitivity_scen <-list(sensitivity_2.int,sensitivity.int,sensitivity_7.int)
pal <- brewer_ramp(length(test_scen), "Spectral")
test_list<-list() #Initialize list to collect results from each screening interval
# Below loop runs model
for (i in 1:length(test_scen_in)) {
test_list[[i]]<-model_scenarios(testing=test_scen_in[i], sensitivity_input = sensitivity_scen[[i]],eff_npi.int=eff_npi.int)
}
#Below loop takes each scenario and computes median active and cumulative cases for students and staff on each day
test_list_cases <- list()
for (i in 1:length(test_list)){
test_list_cases[[i]] <- getcases(test_list[[i]]) %>%
mutate(scenario = rep(test_scen[i]))
}
test_df <- bind_rows(test_list_cases, .id = "column_label")
# plot
theme <- theme_classic()+ theme(legend.position = "none",
plot.title = element_text(size=11, face="bold"),
axis.text = element_text(size=9),
axis.title = element_text(size=9))
# Testing over proportion contacts reached (default contact tracing), need to also specify both testing and sensitivty along with it
p_contacts_reached <- seq(0, 1, 0.1)
test2_list<-list()
test4_list <- list()
test7_list<-list()
test2_list_cases <-list()
test4_list_cases <- list()
test7_list_cases <- list()
#Initialize list to collect results from each screening interval
# Below loop runs model
for (i in 1:length(p_contacts_reached)){
test2_list[[i]]<-model_scenarios(testing=test_scen_in[1], sensitivity_input = sensitivity_scen[[1]], p_contacts_reached = p_contacts_reached[i],eff_npi.int=eff_npi.int)
}
#Below loop takes each scenario and computes median active and cumulative cases for students and staff on each day
for (i in 1:length(test2_list)){
test2_list_cases[[i]] <- getcases(test2_list[[i]]) %>%
mutate(scenario = rep(p_contacts_reached[i]))
}
## 4day test delay
for (i in 1:length(p_contacts_reached)){
test4_list[[i]]<-model_scenarios(testing=test_scen_in[2], sensitivity_input = sensitivity_scen[[2]], p_contacts_reached = p_contacts_reached[i],eff_npi.int=eff_npi.int)
}
#Below loop takes each scenario and computes median active and cumulative cases for students and staff on each day
for (i in 1:length(test4_list)){
test4_list_cases[[i]] <- getcases(test4_list[[i]]) %>%
mutate(scenario = rep(p_contacts_reached[i]))
}
# 7 day test delay
for (i in 1:length(p_contacts_reached)){
test7_list[[i]]<-model_scenarios(testing=test_scen_in[3], sensitivity_input = sensitivity_scen[[3]], p_contacts_reached = p_contacts_reached[i],eff_npi.int=eff_npi.int)
}
#Below loop takes each scenario and computes median active and cumulative cases for students and staff on each day
for (i in 1:length(test7_list)){
test7_list_cases[[i]] <- getcases(test7_list[[i]]) %>%
mutate(scenario = rep(p_contacts_reached[i]))
}
test_all <- list(test2_list_cases,test4_list_cases,test7_list_cases)
for (i in 1:length(test_all)){
test_all[[i]] <- bind_rows(test_all[[i]], .id = "column_label") %>% filter(time==116)%>%
select(med_stud_cum,med_saf_cum,scenario)%>%
melt(id.vars="scenario") %>%
mutate(test = test_scen[i])
}
test_trace_df <- do.call(rbind,test_all)
saveRDS(test_df,"tables/res_fig3_testdf.RDS")
saveRDS(test_trace_df,"tables/res_fig3_testtracedf.RDS")
saveRDS(test_list,"tables/res_fig2_rawmodeloutputs_test.RDS")
saveRDS(test2_list,"tables/res_fig2_rawmodeloutputs_test2.RDS")
saveRDS(test4_list,"tables/res_fig2_rawmodeloutputs_test4.RDS")
saveRDS(test7_list,"tables/res_fig2_rawmodeloutputs_test7.RDS")