-
Notifications
You must be signed in to change notification settings - Fork 11
/
model_steer.py
98 lines (66 loc) · 2.47 KB
/
model_steer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
## This model is used to predict Acceleration
import tensorflow as tf
import scipy
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W, stride):
return tf.nn.conv2d(x, W, strides=[1, stride, stride, 1], padding='VALID')
x = tf.placeholder(tf.float32, shape=[None, 66, 200, 3])
y_ = tf.placeholder(tf.float32, shape=[None, 1])
# isTheta = tf.placeholder(tf.bool)
x_image = x
#first convolutional layer
W_conv1 = weight_variable([5, 5, 3, 24])
b_conv1 = bias_variable([24])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1, 2) + b_conv1)
#second convolutional layer
W_conv2 = weight_variable([5, 5, 24, 36])
b_conv2 = bias_variable([36])
h_conv2 = tf.nn.relu(conv2d(h_conv1, W_conv2, 2) + b_conv2)
#third convolutional layer
W_conv3 = weight_variable([5, 5, 36, 48])
b_conv3 = bias_variable([48])
h_conv3 = tf.nn.relu(conv2d(h_conv2, W_conv3, 2) + b_conv3)
#fourth convolutional layer
W_conv4 = weight_variable([3, 3, 48, 64])
b_conv4 = bias_variable([64])
h_conv4 = tf.nn.relu(conv2d(h_conv3, W_conv4, 1) + b_conv4)
#fifth convolutional layer
W_conv5 = weight_variable([3, 3, 64, 64])
b_conv5 = bias_variable([64])
h_conv5 = tf.nn.relu(conv2d(h_conv4, W_conv5, 1) + b_conv5)
#FCL 1
W_fc1 = weight_variable([1152, 1164])
b_fc1 = bias_variable([1164])
h_conv5_flat = tf.reshape(h_conv5, [-1, 1152])
h_fc1 = tf.nn.relu(tf.matmul(h_conv5_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
#FCL 2
W_fc2 = weight_variable([1164, 100])
b_fc2 = bias_variable([100])
h_fc2 = tf.nn.relu(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
h_fc2_drop = tf.nn.dropout(h_fc2, keep_prob)
#FCL 3
W_fc3 = weight_variable([100, 50])
b_fc3 = bias_variable([50])
h_fc3 = tf.nn.relu(tf.matmul(h_fc2_drop, W_fc3) + b_fc3)
h_fc3_drop = tf.nn.dropout(h_fc3, keep_prob)
#FCL 3
W_fc4 = weight_variable([50, 10])
b_fc4 = bias_variable([10])
h_fc4 = tf.nn.relu(tf.matmul(h_fc3_drop, W_fc4) + b_fc4)
h_fc4_drop = tf.nn.dropout(h_fc4, keep_prob)
#Output
W_fc5 = weight_variable([10, 1])
b_fc5 = bias_variable([1])
# if (tf.cond(tf.eisTheta = True)):
# if (tf.cond(tf.equal(isTheta, tf.constant(True)), lambda: True, lambda: False)):
# if (isTheta is not None):
y = tf.multiply(tf.atan(tf.matmul(h_fc4_drop, W_fc5) + b_fc5), 2) #scale the atan output
# else:
# y = tf.matmul(h_fc4_drop, W_fc5) + b_fc5 #linear output