forked from harvard-edge/cs249r_book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_quarto.yml
157 lines (141 loc) · 5.03 KB
/
_quarto.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
project:
type: book
output-dir: _book
preview:
browser: true
navigate: true
render:
- "*.qmd"
title-prefix: "noprefix"
website:
comments:
hypothesis:
theme: clean
openSidebar: true
cookie-consent:
type: express
style: headline
palette: dark
google-analytics:
tracking-id: "G-M21L0CBCVN"
anonymize-ip: true
book:
navbar:
search: true
pinned: true
collapse: true
back-to-top-navigation: true
sidebar:
search: true
collapse-level: 2
border: false
pinned: true
page-navigation: true
title: "{{< var title.short >}}"
subtitle: "with TinyML"
abstract: "{{< var title.long >}} offers readers an entry point to understand comprehensive machine learning systems by grounding concepts in accessible TinyML applications. As resource-constrained edge computing sees rapid expansion, the ability to construct efficient ML pipelines grows crucial. This book aims to demystify the process of developing complete ML systems suitable for deployment - spanning key phases like data collection, model design, optimization, acceleration, security hardening, and integration. The text touches on the full breadth of concepts relevant to general ML engineering across industries and applications through the lens of TinyML. Readers will learn basic principles around designing ML model architectures, hardware-aware training strategies, performant inference optimization, benchmarking methodologies and more. Additionally, crucial systems considerations in areas like reliability, privacy, responsible AI, and solution validation are also explored in depth. In summary, the book strives to equip newcomers and professionals alike with integrated knowledge covering full stack ML system development, using easily accessible TinyML applications as the vehicle to impart universal concepts required to unlock production ML."
search: true
repo-url: https://github.com/harvard-edge/cs249r_book
repo-actions: [edit, issue, source]
sharing: [twitter, facebook]
reader-mode: true
cover-image: cover.png
favicon: favicon.png
page-footer:
left: |
Edited by Prof. Vijay Janapa Reddi (Harvard University)
right: |
This book was built with <a href="https://quarto.org/">Quarto</a>.
chapters:
- text: "---"
- part: FRONT MATTER
chapters:
- index.qmd
- contents/dedication.qmd
- contents/acknowledgements.qmd
- contents/contributors.qmd
- contents/copyright.qmd
- contents/about.qmd
- text: "---"
- part: MAIN
chapters:
- contents/introduction.qmd
- contents/embedded_sys/embedded_sys.qmd
- contents/dl_primer/dl_primer.qmd
- contents/embedded_ml/embedded_ml.qmd
- contents/workflow/workflow.qmd
- contents/data_engineering/data_engineering.qmd
- contents/frameworks/frameworks.qmd
- contents/training/training.qmd
- contents/efficient_ai/efficient_ai.qmd
- contents/optimizations/optimizations.qmd
- contents/hw_acceleration/hw_acceleration.qmd
- contents/benchmarking/benchmarking.qmd
- contents/ondevice_learning/ondevice_learning.qmd
- contents/ops/ops.qmd
- contents/privacy_security/privacy_security.qmd
- contents/responsible_ai/responsible_ai.qmd
- contents/sustainable_ai/sustainable_ai.qmd
- contents/ai_for_good/ai_for_good.qmd
- contents/robust_ai/robust_ai.qmd
- contents/generative_ai/generative_ai.qmd
- text: "---"
- part: EXERCISES
chapters:
- contents/niclav_sys/niclav_sys.qmd
- contents/image_classification/image_classification.qmd
- contents/object_detection_fomo/object_detection_fomo.qmd
- contents/kws_feature_eng/kws_feature_eng.qmd
- contents/kws_nicla/kws_nicla.qmd
- contents/dsp_spectral_features_block/dsp_spectral_features_block.qmd
- contents/motion_classify_ad/motion_classify_ad.qmd
- text: "---"
appendices:
- contents/tools.qmd
- contents/zoo_datasets.qmd
- contents/zoo_models.qmd
- contents/learning_resources.qmd
- contents/community.qmd
- contents/case_studies.qmd
citation: true
reference-location: margin
citation-location: margin
keywords:
- open-source
- embedded systems
- machine learning
- tinyML
license: CC-BY-NC-SA
crossref:
appendix-title: "Appendix"
appendix-delim: ":"
format:
html:
theme:
light:
- cosmo
- style.scss
- style-light.scss
dark:
- darkly
- style.scss
- style-dark.scss
mainfont: Nunito
highlight-style: github
code-link: true
link-external-icon: false
link-external-newwindow: true
callout-appearance: simple
anchor-sections: true
smooth-scroll: false
citations-hover: false
footnotes-hover: false
fig-width: 8
fig-height: 6
number-depth: 3
toc: true
toc-depth: 4
include-in-header:
text: <script async src="https://www.googletagmanager.com/gtag/js?id=G-M21L0CBCVN"></script>
editor:
render-on-save: true