Skip to content

Latest commit

 

History

History
49 lines (35 loc) · 1.65 KB

README.md

File metadata and controls

49 lines (35 loc) · 1.65 KB

Style Transfer with Style Attentional networks

Image style transfer using a style attentional network.

Training

  • install requirements with pip install -r requirements.txt
  • get your kaggle API key from here
  • start training with python3 train.py

Arguments

  • content_dir directory to content images (default to data/content)
  • style_dir directory to style images (default to data/style)
  • vgg pretrained vgg file (default to pretrained/vgg.pth)
  • lr leaning rate
  • lr_decay leaning rate decay
  • max_iter maximum number of iterations (default to 160,000)
  • batch_size number of image pairs in a batch
  • style_weight style images weight (default to 3.0)
  • content_weight content images weight (default to 1.0)
  • n_threads number of threads used for the data loader (default to 2)
  • save_model_interval interval to save models (default to 1000)
  • start iter number of iteration to start training from (in case training was stopped)

Testing

  • run test.py with appropriate arguments

Arguments

  • content content image
  • style style image
  • alpha style content trade-off
  • vgg path to pretrained vgg model
  • decoder path to pretrained decoder
  • transformer path to pretrained transfomer model

More results

References