-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathvisualization.py
224 lines (186 loc) · 7.96 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import numpy as np
import torch
import cv2
import matplotlib.pyplot as plt
from pytorch3d.transforms import axis_angle_to_matrix
from pytorch3d.structures import Meshes, join_meshes_as_scene
from pytorch3d.renderer import TexturesVertex
from pytorch3d.io import load_obj
from pytorch3d.utils import cameras_from_opencv_projection
from pytorch3d.renderer import (
RasterizationSettings, MeshRenderer, MeshRasterizer, SoftPhongShader
)
import pickle as pkl
import os, json, argparse
from body_model.body_model import BodyModel
# Set the cuda device
if torch.cuda.is_available():
device = torch.device("cuda:0")
torch.cuda.set_device(device)
else:
device = torch.device("cpu")
# constants
data_root = r'data/'
SMPL_MODEL_DIR = r'./body_model/smplh/neutral/model.npz'
smplh = BodyModel(SMPL_MODEL_DIR, num_betas=16).to(device)
def call_args():
parser = argparse.ArgumentParser(description="Visualize Ground Truth.")
parser.add_argument('--motion', type=str, default=r'20230910/20230910_af_skateboard/freestyle1/gt_0_338_2309.pkl')
parser.add_argument('--object', type=str, default='skateboard')
parser.add_argument('--save_dir', default=r'visualizations')
parser.add_argument('--render_width', type=int, default=1920)
parser.add_argument('--render_height', type=int, default=1080)
parser.add_argument('--start', type=int, default=0)
parser.add_argument('--end', type=int, default=-1)
parser.add_argument('--no_motion', action='store_true')
parser.add_argument('--no_imu', action='store_true')
args = parser.parse_args()
date = args.motion.split('/')[0]
args.save_dir = os.path.join(args.save_dir, '/'.join(args.motion.split('/')[:-1]))
args.save_motion_dir = os.path.join(args.save_dir, 'motion')
args.save_imu_dir = os.path.join(args.save_dir, 'imu')
args.motion = os.path.join(data_root, 'ground_truth', args.motion)
args.imu = args.motion.replace('ground_truth', 'imu_preprocessed').replace('/gt_', '/imu_')
args.object = os.path.join(data_root, 'object_templates', args.object, args.object+'_simplified_transformed.obj')
args.extrin = os.path.join(data_root, 'calibrations', date, 'extrin.json')
args.intrin = os.path.join(data_root, 'calibrations', date, 'intrin.json')
assert args.render_width / args.render_height == 16 / 9, "Please specify the render resolution complying with 16:9."
os.makedirs(args.save_motion_dir, exist_ok=True)
os.makedirs(args.save_imu_dir, exist_ok=True)
return args
def load_cameras(args):
with open(args.extrin, 'r') as f:
extrin_data = json.load(f)
with open(args.intrin, 'r') as f:
intrin_data = json.load(f)["color"]
R = np.array(extrin_data['rotation']).reshape((1, 3, 3))
T = np.array(extrin_data['translation']).reshape((1, 3))
K = [intrin_data['fx'], 0, intrin_data['cx'], 0, intrin_data['fy'], intrin_data['cy'], 0, 0, 1]
K = np.array(K).reshape((3, 3))
resolution_ratio = 3840 / args.render_width # raw images are 4K
K = K / resolution_ratio
K[2, 2] = 1
return R, T, K
def make_renderer(R, T, K, args):
# define rasterization setting
cameras = cameras_from_opencv_projection(
R,
T,
K,
torch.tensor([args.render_height, args.render_width]).unsqueeze(0)
)
# define rasterization setting
raster_settings = RasterizationSettings(
image_size=[args.render_height, args.render_width],
blur_radius=0.0,
faces_per_pixel=10,
max_faces_per_bin=100000
)
# define shader
bp = None
shader = SoftPhongShader(
device=device,
cameras=cameras,
blend_params=bp
)
# create renderer
renderer = MeshRenderer(
rasterizer=MeshRasterizer(cameras=cameras, raster_settings=raster_settings),
shader=shader
)
return renderer
def transform_template(objVerts, rot, trans):
trans = trans.to(device)
rot = rot.to(device)
rot = axis_angle_to_matrix(rot).view(3,3)
return torch.mm(objVerts.to(device), rot.T) + trans
def render(args):
# load motion and object
with open(args.motion, 'rb') as f:
gt_data = pkl.load(f)
with open(args.object, 'r') as f:
templateVerts, objFaces, _ = load_obj(f)
templateVerts -= torch.mean(templateVerts, dim=0)
objFaces = objFaces.verts_idx
# specify vertex color
obj_rgb = torch.ones_like(templateVerts)
smplh_rgb = torch.ones(6890, 3)
verts_texture = TexturesVertex(verts_features=[obj_rgb.to(device), smplh_rgb.to(device)])
# load camera parameters
R, T, K = load_cameras(args)
# create renderer
renderer = make_renderer(
torch.from_numpy(R).float().to(device),
torch.from_numpy(T).float().to(device),
torch.from_numpy(K).unsqueeze(0).float().to(device),
args
)
# render
end = gt_data['objectRot'].shape[0] if args.end == -1 else args.end + 1
for frame in range(args.start, end):
objectRot = torch.from_numpy(gt_data['objectRot'][frame]).unsqueeze(0).float()
objectTrans = torch.from_numpy(gt_data['objectTrans'][frame]).unsqueeze(0).float()
objVerts = transform_template(templateVerts, objectRot, objectTrans)
smplPose = torch.from_numpy(gt_data['smplPose'][frame]).unsqueeze(0).float()
smplHandPose = torch.from_numpy(gt_data['smplHandPose'][frame]).unsqueeze(0).float()
smplShape = torch.from_numpy(gt_data['smplShape'][frame]).unsqueeze(0).float()
smplTrans = torch.from_numpy(gt_data['smplTrans'][frame]).unsqueeze(0).float()
smplGt = smplh(
betas=smplShape.to(device),
root_orient=smplPose[:, :3].to(device),
pose_body=smplPose[:, 3:66].to(device),
pose_hand=smplHandPose.to(device),
trans=smplTrans.to(device)
)
humanVerts = smplGt.v.squeeze(0)
humanFaces = smplGt.f
ho_mesh = Meshes(
verts=[objVerts.to(device), humanVerts.to(device)],
faces=[objFaces.to(device), humanFaces.to(device)],
textures=verts_texture
)
rendered_img = renderer(join_meshes_as_scene(ho_mesh))
cv2.imwrite(
os.path.join(args.save_motion_dir, f'{frame}.png'),
255 * rendered_img[0, :, :, :-1].detach().cpu().numpy()
)
def plot(id, x, y, args, **kwargs):
plt.subplot(1, 2, id)
plt.plot(x, y[0], color='red', label='x', marker='o', mfc='w', ms=2.5, markevery=kwargs["mark"])
plt.plot(x, y[1], color='green', label='y', marker='o', mfc='w', ms=2.5, markevery=kwargs["mark"])
plt.plot(x, y[2], color='blue', label='z', marker='o', mfc='w', ms=2.5, markevery=kwargs["mark"])
plt.xlim((args.start, kwargs["end"]))
plt.ylim((kwargs["lb"] - 0.05, kwargs["ub"] + 0.05))
plt.grid(True, linestyle='--')
plt.legend(fancybox=True, framealpha=0.5, loc='upper right')
def plot_imu(args):
with open(args.imu, 'rb') as f:
imu_data = pkl.load(f)
rot_data = imu_data['objectImuOri']; acc_data = imu_data['objectImuAcc']
rot_ub = np.max(rot_data); rot_lb = np.min(rot_data)
acc_ub = np.max(acc_data); acc_lb = np.min(acc_data)
end = rot_data.shape[0] if args.end == -1 else args.end + 1
duration = end - args.start + 1
gap = duration // 64
mark_per = gap if gap > 0 else None
x = np.arange(start=args.start, stop=end, step=1)
plot_rot = rot_data[args.start:end].T; plot_acc = acc_data[args.start:end].T
plt.figure(figsize=(16, 4))
plt.rc('font', family='serif')
plot(1, x, plot_rot, args, end=end, lb=rot_lb, ub=rot_ub, mark=mark_per); plt.title("rot")
plot(2, x, plot_acc, args, end=end, lb=acc_lb, ub=acc_ub, mark=mark_per); plt.title("acc")
plt.suptitle("Imu Signal Visualization")
plt.savefig(
os.path.join(args.save_imu_dir, f'imu.png'),
bbox_inches='tight',
dpi=600
)
plt.close()
def main():
args = call_args()
if not args.no_imu:
plot_imu(args)
if not args.no_motion:
render(args)
if __name__ == "__main__":
main()